Как ученые находят по листьям полезные ископаемые. Ископаемые растения. Асфальт — универсальная ископаемая смола

Существует множество полезных ископаемых, которые добываются из недр Земли. Все они крайне важны, поскольку позволяют получить необходимые для комфортной жизни вещи. Они дают возможность обогревать жилища, питаться, перемещаться в пространстве с большой скоростью, делать чудесные украшения и много другого. Во время исследований ученые открывают очень интересные факты о полезных ископаемых, которые позволяют побольше узнать о тайнах, скрывающихся в подземных глубинах.

  1. Уголь – наиболее распространенное ископаемое, которое используется в виде топлива . Мало кто знает, что из 20-метрового слоя торфа под давлением образуется всего лишь 2-х метровый пласт угля. Если аналогичный слой мертвой растительности залегает на глубине 6 км, то пласт угля будет иметь всего 1,5 м.
  2. Малахит – полудрагоценный камень, из которого делаются потрясающие украшения . Самый большой камень, который удалось добыть, весил 1,5 тонны. Обнаружив такое сокровище, горняки подарили его императрице Екатерине ll. Позднее камень стал экспонатом петербургского музея Горного института.

    2

  3. Обсидиан – вулканическое стекло . Этот материал обладает высокой плотностью. Он образуется под воздействием очень высоких температур при извержении магмы. Археологам удалось найти подтверждения того, что первые хирургические инструменты изготавливались из этого материала.

    3

  4. Сегодня каждый человек знает что такое нефть, и как она происходит. Первая теория происхождения этого полезного ископаемого предполагала, что нефть является ничем иным, как мочой китов . Черное золото начали добывать путем сбора его с поверхности водоемов. В нынешнее время нефть выкачивают из недр Земли при помощи насосных станций.

    4

  5. Ученые продолжают преподносить новые интересные факты о металлах. Так, золото было признано одним из самых гибких металлов . Оно используется даже для изготовления швейных нитей. Из одной унции золота можно получить нить длиной около 80 км.

    5

  6. Железная руда издавна используется человеком. Археологам удалось доказать, что изготовление первых предметов из железной руды датируется ll-lll вв. до нашей эры . Первыми использовали это полезное ископаемое жители Месопотамии.

    6

  7. Хлористый натрий или соль добывается в наибольшем количестве . Несмотря на необходимость этого полезного ископаемого для жизни человека, всего 6% его используется в пищу. Для посыпания дорог при гололеде используется 17% соли. Львиная доля этого минерала используется промышленностью и составляет 77% от всей добычи.

    7

  8. Необычайно интересную историю имеет королева металлов – платина . В XVl веке она была обнаружена испанскими путешественниками, прибывшими к берегам Африки. После исследования этого материала была обнаружена его тугоплавкость. По этой причине платина была признана непригодной и была оценена ниже стоимости серебра.

    8

  9. Серебро издавна славится своими бактерицидными свойствами . Еще воины древнего Рима использовали его для лечения. Если в бою человеку наносились серьезные раны, то целители обкладывали места увечий серебряными пластинами. После таких процедур раны быстро и без всяких осложнений заживали.

    9

  10. Мрамор еще в древности использовался для отделки помещений и создания различных декоративных элементов . Обусловлено это удивительной твердостью материала и его износостойкостью. Мрамор на протяжении 150 лет сохраняет первоначальный вид даже при воздействии температуры, влаги или солнечных лучей.

    10

  11. Алмазы признаны самыми твердыми минералами, добываемыми из недр земли . При этом удар, нанесенный молотком с большой силой, может расколоть камень на мелкие кусочки.

    11

  12. Уран – это металл, который считается одним из самых тяжелых химических элементов . В урановой руде содержится ничтожное количество чистого металла. Уран имеет 14 стадий превращений. Все элементы, которые образуются в ходе превращения, являются радиоактивными. Безопасным считается только свинец, который является заключительной стадией превращения. Для полного преобразования урана в свинец понадобится около миллиарда лет.

    12

  13. Медь является единственным металлом, который не выдает искры при трении , поэтому инструменты из меди могут использоваться в местах, где есть повышенная опасность возгорания.

    13

  14. О почве можно постоянно узнавать много нового. Так, ученые исследовали распространенное полезное ископаемое – торф. Они выявили в нем своеобразные нити, которые отличаются необычайной прочностью. Это открытие нашло свое применение в легкой промышленности. В Голландии были представлены первые изделия из торфяных нитей. Торф является прекрасным консервантом . Он сохраняет останки, попавшие в него тысячи лет назад. Это позволяет ученым узнавать интересные факты о скелете человека, жившего задолго до наших дней, и исследовать останки уже исчезнувших видов животных.

    14

  15. Гранит известен как прочный стройматериал. Но далеко не всем известно, что он проводит звук гораздо быстрее, чем воздух. Скорость прохождения звуковых волн по граниту в 10 раз больше, чем прохождения по воздушному пространству .

    15

Мы надеемся Вам понравилась подборка с картинками - Интересные факты о полезных ископаемых, добываемых из недр Земли (15 фото) онлайн хорошего качества. Оставьте пожалуйста ваше мнение в комментариях! Нам важно каждое мнение.

Где нависли бронзовые скалы
Над зеленей горною рекою,
Встал геолог в клетчатой рубашке
И киркой на скалы замахнулся.

В. Солоухин

Велика и богата наша планета. В недрах ее замурованы несметные сокровища - нефть и каменный уголь, золото и алмазы, медь и редкие металлы. Ценой огромных затрат времени и труда человечество за тысячи лет своего существования сумело добыть из земли лишь малую толику подземных богатств. Во всех странах мира многочисленная армия геологов-разведчиков обследует, обстукивает, ощупывает Землю, стремясь найти новые залежи полезных ископаемых. Опыт многих поколений и первоклассная техника, эрудиция больших ученых и сложные приборы - все поставлено на службу поисков земных кладов. И тем не менее поиски эти нечасто увенчиваются успехом. Природа ревниво хранит свои тайны, уступая лишь самым пытливым и настойчивым.

С давних времен из поколения в поколение передавались приметы, указывающие на выход к поверхности золотоносных жил и нефти, медных руд и каменного угля. Уже давно возникла мысль использовать для поисков полезных ископаемых растения. В старинных народных поверьях говорится о травах и деревьях, способных обнаруживать различные месторождения. Например, считалось, что рябина, крушина и лещина, растущие рядом, скрывают драгоценные камни, а переплетенные корни сосны, ели и пихты указывают на золотые россыпи под ними. Конечно, эти легенды оставались красивой мечтой, и только.

Геологи прибегли к помощи растений лишь в последние десятилетия, когда были найдены научно обоснованные связи между теми или иными растениями и месторождениями некоторых полезных ископаемых. Так, в Австралии и Китае при помощи растений, выбирающих для произрастания почвы с большим содержанием меди, были открыты залежи медной руды, а в Америке тем же способом нашли месторождения серебра.

За последние годы в нашей стране ученые провели тщательные исследования растительности, поселяющейся на участках, где находятся металлоносные руды. Выводы, к которым пришли ученые, были поистине удивительны. Связь между растением, почвой и подпочвенной породой оказалась настолько тесной, что по внешнему виду или химическому составу некоторых растений можно было судить, какие руды залегают в месте их произрастания. Ведь растению совсем небезразлично, какая порода находится под почвой, на которой оно выросло. Подземные воды постепенно в той или иной мере растворяют металлы и, просачиваясь наверх, в почву, поглощаются растениями. Поэтому травы и деревья, растущие над залежами меди, будут пить медную воду, а над залежами никеля - никелевую. Какие бы вещества ни были спрятаны в земле - бериллий или тантал, литий или ниобий, торий или молибден, воды растворят их мельчайшие частички и вынесут на поверхность земли; растения выпьют эти воды, и в каждой травинке, в каждом листочке отложатся микроскопические количества бериллия или тантала, лития или ниобия, тория или молибдена. Даже если металлы лежат глубоко под почвой, на глубине двадцати или тридцати метров, растения чутко откликнутся на их присутствие накоплением этих веществ в своих органах. Для того чтобы определить, сколько и каких металлов накопило растение, его сжигают, а золу изучают химическими методами. Бывает, что над большими залежами какой-нибудь руды этого металла накапливается в растении в сто раз больше, чем в таком же растении, произраставшем в другом районе. Большинство металлов в очень малых количествах накапливается растениями всегда. Они нужны живому организму растения, и без них растение заболевает. Однако крепкие растворы тех же металлов действуют на многие растения как яд. Поэтому в районах месторождений металлических руд почти вся растительность гибнет. Остаются только те деревья и травы, которые могут выдержать накопление в своем организме больших количеств какого-либо металла. Таким образом, в этих районах возникают заросли определенных растений, способных пить металлическую воду. Они указывают места, где нужно искать полезные ископаемые.

Например, большие количества молибдена способны накапливать в своем организме некоторые растения из семейства бобовых, такие, как софора и лядвенец. Иглы лиственницы и листья багульника легко переносят большое количество марганца у ниобия. Ни залежах стронция или бария листья ивы и березы накапливают этих металлов в тридцать-сорок раз больше нормы. Торий откладывается в листьях осины, черемухи и пихты.

В Алтайских горах, где издавна велись разработки медной руды, часто можно встретить многолетнее травянистое растение с узкими сизоватыми листьями, над которыми поднимается неясное облако многочисленных бледно-розовых цветков. Это качим Патрэна. Иногда качим образует большие заросли, которые тянутся широкими полосами на несколько десятков километров. Оказалось, что в большинстве случаев как раз под зарослями качима и залегает медная руда. Поэтому геологи, прежде чем начать подземные работы, составляют карты распространения качима и по картам определяют места предполагаемых медных месторождений. Мощный деревянистый перекрученный корень качима уходит глубоко в землю. Он насквозь пронизывает почву и по трещинам в подстилающей породе добирается до подземных вод, в которых растворена медь. Медная вода поднимается вверх, к сизым листьям и легким цветкам. С июня по август заросли качима кажутся с самолета розовым кружевом, накинутым природой на выжженные степные каменистые склоны. На аэрофотоснимках это кружево обозначится четкой полосой, указывающей места, где залегает медная руда.

На востоке нашей страны густые заросли над залежами редких металлов, в которых содержится бериллий, образует стеллера карликовая. Стеллера - весьма изящное растение с прямыми тонкими стеблями, густо одетыми прижатыми к стеблю ярко-зелеными овальными листьями. Стебель венчает яркая светло малиновая головка, состоящая из двух десятков мелких трубчатых цветков; трубка снаружи малиновая, а отгиб венчика белый. Так же как у качима, у этого чрезвычайно нарядного и нежного растения под землей развит мощный корень, проникающий своими разветвлениями глубоко в трещины твердой породы и всасывающий воду с растворенным в ней бериллием. Стеллера прекрасно выдерживает бериллиевое «меню». Широкие полосы ее сплошных зарослей указывают на аэрофотоснимках места нахождения под землей залежей редких металлов.

Всем известно, какое огромное тэомышлениое значение имеет уран. Поисками этого радиоактивного элемента заняты во многих странах мира. И здесь геологам помогают растения. Если в золе сожженных веток кустарников и деревьев содержание урана повышенное, значит, в этом районе можно надеяться найти уран. Особенно хорошо собирают уран можжевельники. Их мощные, длинные корни за две-три сотни лет жизни каждой особи успевают проникнуть на большую глубину. Даже если урановые залежи и небогаты, можжевельник накопит урана в своих ветках достаточно много. Еще лучше указывает на присутствие урана всем известный ягодный кустарник голубика. Если это растение пьет урановые воды, его продолговатые плоды приобретают самую разнообразную неправильную форму, а иногда даже из темно-синих становятся белыми или зеленоватыми. Розовый иван-чай, растущий на урановых отложениях, может дать вею гамму расцветок - от белой до ярко-пурпуровой. Например, близ урановых рудников на Аляске были собраны цветки иван-чая восьми разных оттенков.

Как правило, урану сопутствуют сера и селен. Поэтому растения, накапливающие эти вещества, тоже принимаются во внимание как указатель возможных урановых месторождений. Если геологи хорошо знают растения, они всегда отличат селеновые астрагалы от всех прочих. А где селен, там может быть и уран.

В некоторых районах пустыни Каракумы близко к поверхности выходят залежи серы. Почва настолько пропитана серой, что, кроме одного вида лишайника, там ничего не растет. Зато лишайники образуют крупные плешины, хорошо заметные с самолета.

На золотых месторождениях в пустынях не произрастает почти никакой растительности. Зато полынь и зайцегуб чувствуют себя здесь превосходно. В своем теле эти растения накапливают такие количества золота, что их по праву можно назвать золотыми.

Интересно, что некоторые растения, живущие над рудными месторождениями, так или иначе меняют свой облик. Поэтому геологи в поисках полезных ископаемых должны обращать внимание на уродливые формы деревьев и трав. К примеру, там, где было открыто большое никелевое месторождение, никелевые воды так повлияли на травянистые растения, что их «родная мама не узнает». Всем известный мохнатенький прострел с крупным цветком здесь совершенно изменился. Над залежами никеля можно собрать букет из прострелов с цветками самой разнообразной окраски - и белой, и голубой, и синей. Кроме того, можно найти здесь особи, у которых лепестки как бы разорваны на узкие ленточки или их нет совсем. Только голые, ничем не прикрытые тычинки торчат на вершине стебля.

Еще заметней преобразилась грудница мохнатая. Это многолетнее растение напоминает мелкую астру. Ее желтые некрупные корзиночки щитком поднимаются над шерстистым беловойлочным стеблем, обрамленным многочисленными продолговатыми листьями. Но никель, с начала жизни проникший во все ее органы, сделал свое черное дело - грудницу не узнать. Мельчайшие желтые цветки, которые должны были быть собраны в соцветие, разбросаны по всему стеблю и прячутся в пазухах листьев. Листья и стебли тоже потеряли свою форму и окраску. Что ни растение, то урод; одно другого необычней. Уродливые особи грудницы мохнатой настолько приурочены к залежам никелевых руд, что, встретив эти формы где-нибудь в большом количестве, геологи начинают тщательно обследовать этот район и почти всегда находят там никель.

Замечено также, что цветки шток-розы с ненормально рассеченными узкими лепестками могут указывать на месторождения меди или молибдена.

Каменистые склоны в Армении весной пламенеют огненными языками. Это цветет мак крупнокоробчатый, расцвечивая предгорья праздничным красным цветом. Лепестки мака с крупным черным пятном у основания широкие, почти почковидные. Однако мак, произрастающий в некоторых районах, не похож на своих сородичей. Его лепестки рассечены на лопасти так, что наблюдается у большинства растущих в этих районах особей. В чем же дело? Дело в том, что в земле здесь скрыты залежи свинца и цинка. Эти металлы, постоянно впитываемые растением, изменили весь ход его развития, а в результате изменилась и форма лепестков.

А лепестки мака, растущего на медно-молибденовых залежах, могут быть совсем черными, с красной узкой каймой - так у них разрастается черное пятно. У других особей пятна на лепестках становятся длинными и узкими, образуя своеобразный черный крест в центре цветка, или, наоборот, сдвигаются к внешнему краю лепестка. В общем, эти маки настолько необычно выглядят, что сразу бросаются в глаза даже ненаблюдательному человеку. А для геологов они - находка!

Иногда при повышенном содержании в почве металлов растения принимают несвойственную им карликовую форму. Если полынь холодная растет над месторождением лития, она кажется недоростком со своим искривленным стеблем и мелкими, ненормально сизыми листьями. Растения, поглощающие большие количества бора, тоже не растут вверх, а приобретают распластанную по земле форму, резко отличающуюся от обычного облика этого растения. Смолевка, пьющая свинцовую воду, тоже вырастает маленькой и коренастой, а ее листья и стебли становятся темно-красными, цветки же - мелкими и невзрачными.

Однако бывает и наоборот. Например, в некоторых районах нашей страны можно встретить гигантские осины. Листья у этих высоченных толстоствольных осин в несколько раз крупнее обычных. Можете себе представить осиновый листочек в тридцать сантиметров? Как флаги трепещут гигантские листья на таких же гигантских черешках. Может быть, эти необыкновенные деревья пьют «живую» воду? В некотором роде, да. Они пьют воду, насыщенную торием,- здесь под почвой залегает месторождение редких металлов.

По холодным землям Якутии, среди топких болот и лиственничных редколесий бегут неширокие речки, впадающие в полноводные реки.

Коротко и бурно лето в Заполярье. Еще льдины, сталкиваясь, плывут по весенним водам рек, а уже на их берегах покрываются фиолетово-розовой пеной мелких цветков низкие заросли рододендронов, распускает нежные листочки голубика, дурманяще пахнет багульник. Над всем этим весенним великолепием от зари до зари стоит нудный комариный звон. Где-то здесь, среди лиственниц, под плотным лишайниковым ковром, глубоко в земле залегают богатейшие месторождения алмазов. Алмазы мелкими изюминками вкраплены в породу, содержащую каменный уголь. Называется такая порода с алмазами кимберлитовой трубкой. Как искать ее, эту кимберлитовую трубку, если спрятана она природой под семью замками? Лишь только случайные выходы кимберлита на поверхность помогают геологам обнаруживать залежи алмазов. То ли мощный оползень обнажит древние слои земли, то ли давнее землетрясение или извержение вулкана. Правда, за последние годы на помощь геологам пришли новые умные приборы, позволяющие «видеть» под землей, но и они не могут безошибочно указывать места природных кладовых драгоценностей. А нельзя ли привлечь в помощники растительность, задумались ученые. Оказалось, можно. Было замечено, что непосредственно над кимберлитовыми трубками и деревья, и кустарники выглядят гораздо лучше, чем их собратья, растущие на известняках. Это и понятно. В породах, включающих алмазы, кроме каменного угля, найдены и апатиты, содержащие фосфор, и слюда, содержащая калий, и различные редкие металлы, необходимые организму растения. Все эти элементы в больших или меньших количествах растворяются подземными водами, затем проникающими в почву. Поэтому растения, которым посчастливилось вырасти над залежами алмазов, питаются гораздо лучше, чем деревья и кустарники, прозябающие на тощих известняках. Вот почему над залежами алмазов выше и толще лиственницы, кудрявей ольха, гуще заросли голубики. Там, где на известняках или болоте выросло сто хилых лиственниц, на кимберлитовых трубках - двести здоровых. Если подняться над этими местами на самолете, то можно видеть среди лиственничных лесов более густые и пышные заросли - как раз в тех местах, где залегают кимберлитовые трубки. Но в таком важном деле, как поиски алмазов, человеческому глазу не доверяют. Гораздо объективней глаз фотоаппарата, бесстрастно обращенный вниз, на землю. На пленке фотоаппарат аккуратно отмечает темными пятнами на сером фоне редколесий участки более густого и высокого леса, а значит, места, где нужно искать алмазы.

Нет, нелегкая это задача - поиски полезных ископаемых. И, конечно, одним только показаниям деревьев и трав совершенно довериться нельзя. Однако растения, как настоящие разведчики, не раз уже помогали геологам в поисках подземных кладов.

Драгоценные металлы, нефть, газ, уголь добываются в земле. Однако мало кто слышал о нескольких интересных фактах, которых не увидишь в школьных учебниках. Представляем вашему вниманию небольшую подборку интересных фактов о полезных ископаемых.

Платина

Несмотря на свой высокий титул королевы металлов, платина была оценена намного ниже серебра. Причиной этого стала тугоплавкость платины и невозможность чеканки из нее монет.

В ХІХ веке на казначейском дворе России скопилось много платины, которую добывали на Урале. Из нее решили сделать монету, стоимость которой была между серебром и золотом. Монета стала популярной, ее охотно принимали не только в России, но и за рубежом.

В 1843 году был найден самый большой платиновый самородок весом в 9 килограмм 635 грамм. До наших дней он не дошел, так как был переплавлен.

Золото

Золото заслужило звание самого гибкого металла. Ученые доказали, что из одной лишь унции золота можно свит нить длиною в 80 км.

Золота в мире добыто не так уж много — если его сложить вместе, получится куб размером приблизительно как школьный спортзал.

В древнем Перу в столице Куско были дома, которые облицовывались золотой фольгой. Так что золотой город — это не легенда, он существовал на самом деле. Остатки такой «штукатурки» можно увидеть в музейных экспозициях.

Поток золота и серебра из Америки стал причиной обесценивания денег, что стало одной из причин упадка экономики Османской империи, которая не имела такого мощного источника драгоценных металлов. Финансовые трудности были одной из причин приостановки экспансии исламского государства в Европу, так что открытие Америки послужило «вторым фронтом» против турецкой экспансии.

Чистое золото в порошкообразном виде имеет красный цвет. Тонкую пластину можно выковать до такой толщины, что она станет полупрозрачной и будет иметь зеленый оттенок.

Первой теорией о происхождении нефти было то, что нефть – есть моча китов. Изначально «черное золото» собирали с поверхностей водоемов. Только много позже нефть стали добывать из недр Земли с помощью нефтяных вышек и насосных станций.

Нефть — органического происхождения, она образовывалась из вымерших существ. Только это были не динозавры и не млекопитающие, а морской планктон, который был в древних морях в больших количествах.

В начале ХХ века в России на месторождениях возле города Баку добывалось около половины нефти мира. Еще одним важным нефтяным регионом была Галиция (Западная Украина). Возле галицийских городов Борислав и Дрогобыч нефть залегала практически у поверхности — ее добывали с помощью колодцев, вынимая на поверхность с помощью ведер.

Уголь – самое распространенное ископаемое в мире. Углем топиться большинство загородных домов и домов, находящихся в сельской местности. Но, несмотря на такую популярность, добывается уголь сложно: из 20 м торфяного слоя, находящегося под значительным давлением, образуется лишь двухметровый пласт угля. Для сравнения: если торф залегает на глубине 6 км в естественных условиях, то угольный пласт — не более полутора метров.

Из угля можно делать обычный бензин и керосин. Это трудоемкий и дорогостоящий процесс, но в годы Второй мировой войны таким образом поступали немцы, которым нефти не хватало для обеспечения армии топливом.

Обжигая дерево без доступа воздуха, можно получить древесный уголь, который дает большую температуру горения и может использоваться для выплавки железа и в кузнечном деле.

Обсидиан

Обсидиан – очень прочный камень с высокой плотностью. Он образуется, главным образом, из вулканической магмы. Другое название этого камня – вулканическое стекло. Его в древности использовали люди для изготовления орудий труда и оружия.

Археологи обнаружили доказательства того, что самые первые хирургические инструменты были изготовлены именно из вулканического стекла.

Из этого материала делали оружие ацтеки. Они нанизывали острые обсидиановые пластины на плоские палки, делая что-то наподобие мечей.

Малахит

Кто не слышал сказ Бажова «Малахитовая шкатулка»? Малахит красив сам по себе – радужно-зеленый, переливающийся полудрагоценный камень. Из него делают украшения и красивые поделки.

Малахит — это медная руда, из него выплавляют этот красный металл. Медь — это единственный металл, не дающий искр при трении.

Самый массивный камень весил 1,5 тонны. Он был преподнесен императрице Екатерине II, а позже занял почетное место в музее Горного института в Питере.

Серебро

Серебро в древние времена применяли для лечения открытых ран. Ведь, как известно, серебро обладает бактерицидными свойствами. Вокруг самой раны клали особые пластины из серебра, после чего она без проблем заживала.

Добыча серебра в Южной Америке, которую проводили испанцы, проводилось в больших масштабах. Это привело к значительному падению цены на этот металл. В античные времена соотношение цены золота и серебра было 1 к 10, сегодня же за один грамм золота дают около ста грамм серебра, то есть за два тысячелетия серебро подешевело к золоту в десять раз.

Алмаз

Парадокс: его считают твердым минералом, однако если ударить по нему молотком со всей силы, то он может расколоться на мелкие части. Это связано скорее с наличием микротрещин, нежели с непрочностью материала.

Сегодня большинство алмазов, которые продаются в ювелирных магазинах, искусственного происхождения. Из изготовляют из углеродной смеси при высоких температурах и одновременном высоком давлении.

Большинство алмазов в природе черного цвета, они дешевы и идут на изготовление абразивных инструментов, например, наждачной бумаги. Черные алмазы для потребностей промышленности также делают искусственным путем.

Торф

Ученые выяснили, что торф — отличный консервант. В слоях торфа сохраняются останки животных и предметы быта, что позволяет ученым узнавать все больше подробностей о жизни древних людей и животных.

Торф — отличное удобрение. Но только его нельзя применять в чистом виде, так как растение может не прижиться. В качестве удобрения его добавляют в обычную землю и тщательно перемешивают.

Торфяники часто загораются. Такие пожары трудно потушить, кроме того, возникает опасность образования полостей под землей вследствие выгорания подземного торфа. В эти полости могут провалится люди и техника.

Соль

Это еще один самый распространенный минерал. Однако в пищу используют всего 6% соли. Еще 17% ее уходит на посыпание дорог при гололеде, а остальные 77% — на промышленные нужды.

В средние века соль очень ценилась, так как это был единственный пищевой консервант, который позволял делать запасы продуктов на зиму.

В IX веке соленую селедку ели только бедные жители, так как рыба горчила. После того, как люди догадались вынимать жабра перед солением, рыба получила отличный вкус и стала востребованной всеми слоями населения.

Соль в организме человека задерживает воду, поэтому из-за этого продукта может резко подняться артериальное давление.

Ископаемые растения ископа́емые расте́ния

растения геологического прошлого. Среди них как ныне живущие реликтовые (гинкго, метасеквойя), так и вымершие (беннетитовые, кордаитовые, каламитовые) группы растений. Остатки и следы их сохранились в отложениях земной коры в виде фитолейм (мумификаций), окаменелостей, отпечатков листьев, плодов и т. д. Образуют скопления полезных ископаемых (торф, угли, горючие сланцы). Используются в геохронологии. Наиболее древние ископаемые растения (водоросли) известны из отложений докембрия, в силуре появились первые высшие растения (риниофиты). Наука об ископаемых растениях - палеоботаника.

ИСКОПАЕМЫЕ РАСТЕНИЯ

ИСКОПА́ЕМЫЕ РАСТЕ́НИЯ, остатки растений, сохранившиеся в осадочных горных породах. Ископаемые растения образуют осадочные породы (торф (см. ТОРФ) , уголь (см. УГЛИ ИСКОПАЕМЫЕ) , водорослевые известняки (см. ИЗВЕСТНЯК) и др.) или встречаются как включения в массе минеральных частиц. Включенные остатки растений находят в породах различного происхождения, как морских, так и континентальных. Иногда они образуются в результате погребения целого растения, корней, стволов в прижизненном положении под наносами песка, ила или вулканического пепла. Однако чаще мы имеем дело с разрозненными органами растений - обломками древесины, листьями, семенами, спорами и пыльцой. Этот растительный материал частью состоит из органов, которые отделяются от растения при жизни (листья листопадных пород, семена, пыльцевые зерна и др.), частью же образуются в результате гибели и распада растительных тканей. Те и другие остатки переносятся водой и ветром, попадая в область накопления осадочных пород (чаще всего это озерные глины, опоки (см. ОПОКА (в геологии)) , известняки, болотные торфяники, илистые наносы в поймах и дельтах рек, а для морских водорослей - мелководные известняки).
Формы сохранности ископаемых растений
Форма сохранности ископаемого растения зависит от состава породы и химических условий захоронения. Для крупных органов самая обычная форма сохранности - это отпечатки, которые, однако, не являются механическим оттиском растения на породе, как иногда думают, а представляют собой тонкие минеральные пленки, выпадающие из иловых растворов на поверхности растительного остатка (инкрустация) или во внутренних полостях (субкрустация). При благоприятных условиях сохранившие объем растительные остатки полностью замещаются кремнистыми, карбонатными или железистыми соединениями, образуя окаменелость. Такие остатки представляют особую ценность, так как у них сохраняется структура тканей. Много палеоботанических открытий связано с окаменелостями, заключенными в «угольные почки» - карбонатные стяжения в угольных пластах. Иная форма сохранности возникает из спрессованных растительных остатков, органическое вещество которых не замещено или лишь в незначительной степени замещено минералами. Это так называемые фитолеймы (дословно «растительные пленки», в англоязычной литературе - compressions). Угольный пласт, в сущности, состоит из таких остатков, но по большей части разложившихся и бесструктурных. Мельчайший растительный материал, рассеянный в горных породах, служит материнским веществом для нефти (см. НЕФТЬ) и природного газа. Однако во многих случаях фитолеймы сохраняют клеточную структуру. Такие ископаемые чаще всего образуются в бескислородных условиях на дне застойных водоемов. При этом лучше всего сохраняются образования, содержащие химически устойчивые вещества - кутин (см. КУТИН) или спорополленин. Это кутикулярные пленки, покрывающие эпидермис («кожицу») наземных растений, оболочки спор и пыльцы. Даже у самых древних растений под сканирующим электронным микроскопом прекрасно видны мельчайшие стуктурные детали этих образований.
Методы исследования
Наука, изучающая ископаемые растения, называется палеоботаникой (см. ПАЛЕОБОТАНИКА) . В современных палеоботанических исследованиях широко используется световая и электронная микроскопия, требующая довольно сложных методов обработки ископаемого растительного материала - выделения из породы, изготовления шлифов и срезов, препаратов кутикулы, спор, пыльцы и др. Благодаря этому ископаемые растения по морфологической изученности немногим уступают современным. Полученные в ходе палеоботанических исследований данные используются в систематике растений, для решения эволюционных проблем, для познания растительности и климатических условий прошлого, а также в стратиграфии (науке о последовательности и пространственных взаимоотношениях слоев осадочной оболочки Земли). Так, в результате палеоботанических исследований были открыты предковые формы голосеменных и цветковых растений (прогимноспермы (см. ПРОГИМНОСПЕРМЫ) и проангиоспермы (см. ПРОАНГИОСПЕРМЫ) , соответственно), еще не имевшие листьев первичные наземные растения псилофиты (см. ПСИЛОФИТЫ) , разделившиеся в результате быстротечных морфологических преобразований на основные эволюционные стволы растительного мира. Эти открытия позволили в первом приближении построить документально обоснованную филогению (см. ФИЛОГЕНЕЗ) растительного мира, работа над которой продолжается.
Реконструкция прошлого
Смена растительных остатков в ходе геологического времени, запечатленная палеоботанической летописью, дает представление не только об эволюционной последовательности форм, но и о развитии растительности в связи с глобальными изменениями климата и другими факторами среды обитания, которые также удается реконструировать на основе палеоботанических данных. Сейчас уже много известно о растительных сообществах прошлого, об экологии исчезнувших с лица земли лесов, об их значении в эволюции животных и человека. Мы можем точно установить, какие растения посещали насекомые, жившие сотни миллионов лет назад: в их желудках нередко сохраняется пыльца вымерших растений. Подобные находки проливают свет на сопряженную эволюцию (коэволюцию) растений и животных, но в этой области еще много непознанного.
На ранних этапах палеоботанических исследований, в середине 18 века, ископаемые растения принимали за остатки ныне живущих видов. Однако такие экзотические находки, как листья пальм в арктических широтах, опрокидывали представление о неизменности лика Земли и населяющих ее существ. Вначале подобные находки объясняли иным распределением видов в прошлом. Действительно, на территории Европы когда-то встречались растения, ближайшие родственники которых сейчас обитают лишь в тропиках. Со временем пришлось признать, что многие ископаемые остатки принадлежат полностью вымершим группам растений, причем чем дальше вглубь времен, тем таких ископаемых больше.
Этапы эволюции
Эволюция растительного мира распадается на крупные этапы, соответствующие эрам, периодам и эпохам геологической летописи. Древнейшие растения - это остатки микроскопических водорослей, сохранившиеся в горных породах, геологический возраст которых более двух миллиардов лет. Около шестисот миллионов лет назад появились многоклеточные слоевищные растения, давшие начало различным типам высших водорослей, без больших изменений сохранившихся до наших дней. Первые признаки существования наземных растений (главным образом, обрывки кутикулы и споры) мы находим на хронологическом уровне около четырехсот миллионов лет назад. Эти этапы замедленной эволюции сменились в девонском периоде бурным развитием псилофитов, давших начало всем известным сейчас классам высших растений, за исключением цветковых, появившихся много позже, около 130 миллионов лет назад. В девонском периоде (см. ДЕВОНСКАЯ СИСТЕМА (ПЕРИОД)) практически одновременно возникли примитивные формы папоротников (см. ПАПОРОТНИКОВИДНЫЕ) , плауновидных (см. ПЛАУНОВИДНЫЕ) , членистостебельных и, к концу его - голосеменных (см. ГОЛОСЕМЕННЫЕ) . В последующем каменноугольном периоде (см. КАМЕННОУГОЛЬНАЯ СИСТЕМА (ПЕРИОД)) резко возросло разнообразие как споровых, так и семенных растений. Плауновидные и членистостебельные достигали размеров крупных деревьев. Конец палеозойской (см. ПАЛЕОЗОЙСКАЯ ЭРАТЕМА (ЭРА)) и мезозойская эры (см. МЕЗОЗОЙСКАЯ ЭРА) прошли под знаком бурной эволюции голосеменных, среди которых обособились саговниковые (см. САГОВНИКИ) , гинкговые, хвойные, гнетовые (см. ГНЕТОВЫЕ) и многие вымершие группы. К концу мезозойской эры уже главенствовали цветковые растения. Эти эволюционные события формировали общий облик растительности, который в целом приближался к современному. Однако в определенные моменты геологической истории происходило кардинальное преобразование растительности всех континентов. Все эти сложные процессы известны лишь в общих чертах. Движущие силы и механизмы эволюционных преобразований еще остаются во многом неясными.

Энциклопедический словарь . 2009 .

Смотреть что такое "ископаемые растения" в других словарях:

    Современная энциклопедия

    Растения геологического прошлого. Среди них как ныне живущие реликтовые (гинкго, метасеквойя), так и вымершие (беннетитовые, кордаитовые, каламитовые) группы растений. Остатки и следы их сохранились в отложениях земной коры в виде фитолейм… … Большой Энциклопедический словарь

    Ископаемые растения - ИСКОПАЕМЫЕ РАСТЕНИЯ, растения геологического прошлого. Среди них как ныне живущие реликтовые (секвойя, карликовая береза), так и вымершие (беннетитовые, кордиатовые, каламитовые) группы растений. Остатки и следы их сохранились в отложениях земной … Иллюстрированный энциклопедический словарь

    Растения геол. прошлого, остатки к рых сохранились в отложениях земной коры. Среди них встречаются как ныне живущие, так и целиком вымершие (риниофиты, прапапоротники, каламиты, птеридоспермы, кордаитовые, беннеттитовые, глоссоптериды и др.) И. р … Биологический энциклопедический словарь

    ископаемые растения - история Земли, геологические эры и периоды ископаемые растения. лепидофиты: сигиллярии. лепидодендроны. каламиты. аннулярии. кордаиты. археоптерис. беннеттиты. глоссоптерис. нематофитон. псилофиты. птеридоспермы. араукариты. | стигмарии.… … Идеографический словарь русского языка

    ископаемые растения - iškastiniai augalai statusas T sritis ekologija ir aplinkotyra apibrėžtis Augalai, kurie augo Žemėje geologinėje praeityje. Jų likučių randami Žemės plutoje. Samanos dažnai randamos vientisos, stuomeninių augalų – dažniausiai tik dalys: stiebo,… … Ekologijos terminų aiškinamasis žodynas

    Растения прошлых геологических периодов, остатки которых сохранились в отложениях земной коры. Изучение И. р. предмет палеоботаники (См. Палеоботаника). В целом виде сохраняются низшие растения (водоросли и бактерии, рис. 1а в, 2, 3), из… … Большая советская энциклопедия

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Как ищут месторождения полезных ископаемых

Месторождения полезных ископаемых.

Прежде чем разрабатывать месторождения полезных ископаемых, их нужно найти, выявить, оценить. Это увлекательная, но не легкая задача. Недра нашей планеты таят огромные запасы полезных ископаемых. Часть из них залегает около поверхности Земли, другие же - на больших глубинах, под толщей "пустой" породы. Искать скрытые месторождения особенно трудно, даже опытный геолог может пройти над ними, ничего не заметив. И здесь на помощь приходит наука. Геолог, приступая к поискам, должен ясно представлять себе, что и где он будет искать. Наука теоретически обосновывает общее направление поисков месторождений: она указывает, в каких районах, среди каких горных пород и по каким признакам следует искать скопления ископаемых. При поисках месторождений в конкретном районе большую помощь геологу-поисковику оказывает геологическая карта. Ученые разработали различные прямые и косвенные методы поиска и разведки полезных ископаемых. О них и пойдет речь ниже.

Геологическая карта.

Геологическая карта дает общие представления о геологическом строении того района, где ищут то или иное полезное ископаемое. Она составляется по материалам обследования обнажений, т. е. выходов коренных пород (например, в оврагах, ущельях и по горным склонам), а также опорных скважин, из которых получают образцы горных пород с глубины в десятки, сотни и даже тысячи метров.

На геологической карте показано, какие горные породы и какого возраста находятся в том или ином месте, в каком направлении они простираются и погружаются на глубину. На карте видно, что одни породы встречаются редко, а другие тянутся на десятки и сотни километров. Например, на карте указано, что в центральной части Главного Кавказского хребта залегают граниты. Много гранитов и на Урале, и в Тянь-Шане. О чем это говорит геологу-разведчику? Мы уже знаем, что в самих гранитах и в изверженных породах, похожих на граниты, можно встретить месторождения слюды, горного хрусталя, свинца, цинка, олова, вольфрама, золота, серебра, мышьяка, сурьмы и ртути. А в темноокрашенных изверженных породах - дунитах и перидотитах - могут концентрироваться хром, никель, платина, асбест. Совсем другие полезные ископаемые связаны с осадочными горными породами разного происхождения и возраста.

Геологические карты разных масштабов составлены на всю территорию Советского Союза. Кроме районов распространения различных горных пород на них выделяют складки, трещины и другие участки, в которых могут залегать руды, а также места находок рудных минералов. По этим данным намечают рудные районы и более крупные площади - металлогенические провинции, в которых установлены признаки определенных руд и могут быть найдены их месторождения. Кроме основных карт составляют специальные прогнозные геологические карты. На них наносят все, даже самые мелкие находки полезных ископаемых, а также различные косвенные данные, которые могут подсказать места скопления рудных богатств.

Анализируя прогнозную карту, геологи намечают наиболее перспективные для поисков руд районы, в которые направляются экспедиции. Геологическая карта - верный и надежный помощник геолога-поисковика. С геологической картой в руках он уверенно идет по маршруту, потому что знает, где можно встретить не только интересующие его породы, но и полезные ископаемые. Вот, например, как геологическая карта помогла в поисках алмазных месторождений в Сибири. Геологам было известно, что в Якутии встречаются такие же изверженные горные породы, как и алмазоносные породы Южной Африки - кимберлиты. Разведчики недр сделали вывод, что и в Якутии можно найти алмазы. Но где искать крохотные алмазы в непроходимой тайге? Задача казалась фантастической. И тут на помощь пришла геологическая карта. По ней установили, в каких районах тайги находятся породы, в которых или возле которых могут быть найдены алмазы. Геологи настойчиво искали алмазы в этих районах - и наконец, нашли их. Полезные ископаемые трудно искать не только в тайге, нелегки их поиски и в степи, где видны лишь ковыль да распаханная целина. А что под ними? Кто знает? Так выглядит степь и в Западном Казахстане, в районе г. Актюбинска. Теперь геологам известно, что здесь под степными землями залегает огромный массив ультраосновных пород. По редким балкам и логам, немногочисленным естественным обнажениям они выяснили, где находятся дуниты - разновидности ультраосновных пород, в которых обычно залегают месторождения хромитовых руд, установили и нанесли на карту границы и форму их массивов.

По карте геолог определяет, в каком месте вероятнее всего находится руда. Но и с картой в руках геологу-поисковику бывает трудно искать месторождения, если они полностью закрыты почвенным слоем, скрыты под таежной чащобой или толщей вод. Кроме того, далеко не в каждом обнаруженном массиве известняков залегают свинцово-цинковые руды или в ультраосновных породах - хромиты. На помощь приходят поисковые признаки, накопленные многими поколениями разведчиков недр или установленные наукой.

Поисковые признаки.

Отправляясь на поиск, геолог обращает внимание на все: на формы рельефа, на характер растительности, на изменение цвета почвы и на многое другое. Он должен хорошо знать признаки, помогающие отыскивать конкретное полезное ископаемое, которое, судя по геологической карте, должно быть в данном районе. Иногда одни минералы помогают найти месторождения других, более ценных, как это было в Якутии, где алмазы искали по сопутствующим им ярко-красным пиропам или гранатам. В районах многих рудных месторождений нередко изменяется окраска горных пород под воздействием горячих минерализованных растворов, которые циркулируют по трещинам в земной коре. Эти растворы одни минералы растворяют, а другие отлагают, и цвет породы изменяется. Многие рудные тела при выветривании также изменяют свои обычные серые, коричневые и другие малоприметные окраски. Так, сернистые руды железа, меди, свинца, цинка, мышьяка становятся ярко-желтого, красного, зеленого, синего цвета. Нередко химические соединения различных элементов приобретают один и тот же цвет. Поэтому для точного определения минерала геологи прибегают к химическому анализу. Например, найден кусок рыхлой породы, в которой виден какой-то красный порошок. Что это - минерал ртути, киноварь или окисленное железо? Они могут быть похожи по цвету. Определяя на глаз, можно ошибиться; правильный ответ дает химический анализ.

Поисковик знает, как важны даже незначительные находки рудных минералов. Ведь они указывают на возможную близость месторождений и могут подсказать, где нужно тщательнее проводить поиск. С особым вниманием поисковик относится к древним выработкам, в которых наши предки несколько столетий назад добывали руду. Здесь на глубине, куда они не могли проникнуть, или поблизости от старых штолен можно встретить новые месторождения руд. О местах их залегания порой говорят старые названия поселений, речек, логов, гор. В Средней Азии, например, в названия многих гор, логов и перевалов входит слово "кан", что значит руда. Бывали случаи, когда геологи в таких местах начинали поиски руд и находили их.

В поисках месторождений помогают даже животные. Первые якутские алмазы "помогла" найти лиса. Роя нору, она выбрасывала вместе с землей мелкие камешки. Среди них и оказался ярко-красный пироп, который образуется и залегает вместе с алмазом. Поэтому в местах, закрытых слоем почвы, геологи внимательно осматривают камешки, которые выбрасывают из своих нор суслики, лисы и другие животные. Выявлять поисковые признаки помогают различные геологические либо применяемые все в больших масштабах специальные геохимические и геофизические методы. Они основаны на изучении магнитных свойств горных пород, скорости прохождения сейсмических волн, электропроводности и других физических свойств, а также на знании структур, в которых скапливаются полезные ископаемые. Геофизические поисковые работы проводятся с помощью сложных приборов. На практике обычно сочетают все методы поисков, изменяя эти сочетания для различных пород и полезных ископаемых, а также в зависимости от географических условий района поисков.

Геологические методы поисков.

Представьте себе, что геологи ведут поиск в глухой, дремучей тайге Восточной Сибири. Здесь горные породы закрыты почвенным слоем и густой растительностью. Но дождь, снег, ветер и солнце постоянно и неутомимо разрушают горные породы, даже такие крепкие, как гранит. Вместе с горными породами разрушаются и залегающие в них руды. Кусочки руды сносятся в реку и перемещаются по ее дну на большие расстояния. Поэтому геолог при поисках руд просматривает камешки, которые лежат в русле или на берегу горной речки. Если он находит рудные обломки, то идет вверх по руслу реки - туда, откуда они принесены. Если эти обломки уже не встречаются в русле речки, то геолог продолжает маршрут по ее притокам, выясняя, в каком из них есть кусочки руды. Наконец, и в русле притока рудные обломки уже не попадаются. Значит, дальше надо искать на склонах гор, поднимающихся над руслом речки, на участке, где найдены последние рудные обломки.

Так по обломкам руды, встречающимся в руслах рек и ее притоках, геолог находит месторождение; этот метод поисков называют обломочно-речным. Он применяется в том случае, когда в русле речки и на склонах гор попадаются обломки в виде более или менее крупных кусочков. Если же зернышки руды, перемещаясь в русле речек, истираются и становятся не больше булавочной головки, то геолог использует шлиховой метод. Он берет пробу рыхлой породы из русла речки и в похожем на маленькое корыто лотке промывает ее водой до тех пор, пока все легкие минералы не будут смыты и на дне останутся только крупинки самых тяжелых минералов. Среди них могут быть золото, платина, минералы олова, вольфрама и других элементов. Такая работа называется промывкой шлихов.

Продвигаясь вверх по руслу речки и промывая шлихи, геолог постепенно приближается к месторождению полезных ископаемых. Оно иногда выходит на поверхность на небольшой площади, окруженной кустарниками и другой растительностью, и его можно не заметить. Однако рассеянные на большом расстоянии рудные обломки помогают геологу найти руду. По территории северных стран, таких, как Канада, Швеция, Норвегия, Финляндия, а также некоторых районов Советского Союза в ледниковый период с севера на юг передвигались большие массы льдов - ледники. Они надробили и переместили много обломков горных пород, окутали их и отложили на всем пути своего движения. В обломках этих пород - валунах - находят и включения руд, но искать месторождения по валунам нелегко.

Кто ездил поездом от Ленинграда до Мурманска и далее на запад, до самой границы, тот видел, что на всем пути разбросано огромное количество окатанных валунов. Все их осматривать невозможно, да нет и смысла. Но попутно обращать внимание на них следует. Может быть, в одном из валунов блеснет ярко-желтое зернышко золота или засверкают антрацитовым блеском минералы хрома, титана или других минералов. Геологи изучают пути движения древних, давно растаявших ледников, идут туда, откуда перемещались валуны с рудой, и находят рудные месторождения. Так, в Карелии геологи обнаружили серноколчеданные и молибденовое месторождения.

Тысячелетия бьются волны морского прибоя о каменные берега, разрушая их. Куски пород перетираются до мельчайших частичек и уносятся в море, а если в породе находятся крепкие тяжелые руды, то они дробятся, но оседают у берега и, накапливаясь, образуют месторождения. В морских россыпях могут быть минералы хрома, титана, олова, циркония и др. Иногда встречаются алмазные россыпи. Алмаз - самый твердый минерал, он мало истирается и разрушается в зоне прибоя. Чтобы обнаружить россыпь, геологи берут в прибрежной зоне через определенные расстояния пробы грунта. После лабораторных исследований они выясняют, в каких пробах есть ценные минералы и сколько их. Методы поисков, о которых здесь было рассказано, можно применять, если руда химически устойчива, имеет значительную прочность или если она заключена в кусках крепких пород. А что делать, если минералы мягкие и, как только попадают в бурную горную речку, сразу же растираются в порошок? Таких, например, длинных путешествий, какие проделывает золото, не выдерживают минералы меди, свинца, цинка, ртути, сурьмы. Они не только превращаются в порошок, но и частично окисляются и растворяются в воде. Понятно, что геологу тут поможет не шлиховой, а другой метод.

Геохимические и биогеохимические методы поисков.

После дождей и таяния снега часть воды проникает в глубь Земли. Если на своем пути вода проходит по трещинам рудного тела, она частично растворяет химические соединения меди, цинка, никеля, молибдена и других металлов, нередко вынося их на поверхность. Если сделать химический анализ такой воды, можно определить присутствие в ней тех или иных металлов и их концентрацию. Высокая концентрация вещества в растворе может означать, что источник находится вблизи месторождения полезного ископаемого.

Геохимический метод поиска помогает и в тех случаях, когда, кажется, что найти месторождение невозможно. Представьте себе безводные равнины Казахстана, где на поверхности нет никаких признаков руды. Здесь геологи проходят параллельными маршрутами и берут через 50, 100 или 200 м куски пород. Набирают образцов очень много и затем делают их химический анализ. Состав образцов определяют также более быстрым, но менее точным методом спектрального анализа, при этом исследуемый минерал растирают в порошок и сжигают в пламени вольтовой дуги особого прибора - спектрографа. Свет от пламени вольтовой дуги проходит через стеклянную призму и разлагается, образуя спектр. Далее световые лучи попадают на стеклянную пластинку и фотографируются на ней. В зависимости от того, в каком месте и какой ширины на пластинке получаются линии спектра, определяют, какие химические элементы и сколько их находится в исследуемой пробе. Так узнают, в каком месте в породах содержится больше металлов.

Геохимический метод поможет и в том случае, когда на глаз и даже в микроскоп рудные частицы не видны. Содержатся они в породе в очень малых количествах - обычно в тысячных долях процента. Ученые установили, что вокруг рудных месторождений в горных породах рассеяно рудное вещество, количество которого уменьшается по мере удаления от месторождений. Такое распределение рудного вещества вокруг месторождения называется ореолом рассеяния. Допустим, с помощью анализов удалось установить, что в породах всюду содержится 0,001% металла, а на одном каком-то участке его 0,002%. Естественно, руду нужно искать на участке с повышенным содержанием металла.

От глубоко залегающих месторождений угля, нефти и природных газов по трещинам к поверхности Земли поднимаются углеводородные газовые соединения, которые накапливаются в почвенном слое. Газы образуются и над месторождениями некоторых металлов. Например, над ртутными минералами концентрируются ртутные газы, а над урановыми рудами - газ радон. Месторождения как бы дышат, и следы их дыхания - газы - собираются в почве. Геологи специальными приборами откачивают воздух из почв и производят анализ пробы, определяя, есть ли здесь газы, каковы их состав и концентрация. Затем геологи наносят на карту места, где взяты пробы, содержание в них газов и выясняют, на какой территории в почвенном слое содержится газ. Это метод газовой съемки.

Корни многих трав и особенно корни деревьев глубоко проникают в почву, откуда высасывают воду. Растения впитывают воду вместе с растворенными в ней минеральными веществами. Поэтому геологи собирают травы, листья, кору деревьев, высушивают собранный материал, а потом сжигают его. Получается зола, в которой содержатся минеральные вещества. С помощью химических или других анализов узнают, какие вещества содержатся в золе и сколько их. Когда сделают все анализы (а их нужно очень много!), то выяснится, в каких местах растения получают с водой больше минеральных веществ и где под слоем почвы нужно искать руду.

Кроме того, некоторые растения предпочитают почву с определенными химическими элементами. Так, на Алтае и в Казахстане встречается растение качим патреца. Оказывается, оно растет на почвах, обогащенных медью. Для обогащенных цинком почв характерны растения "цинковые" фиалки. Два вида астрагала (травы и кустарники из семейства бобовых) и один вид лебеды растут на почвах, содержащих уран. И наоборот, определенные виды растений над месторождениями не растут, хотя в этом районе они и распространены. Например, в дубравах Заволжья над месторождениями серы нет деревьев. В Трансваале (Южная Африка) над платиноносными перидотитами растительность вообще отсутствует или встречаются только малорослые, как говорят ботаники, угнетенные, формы. Растения, по которым можно судить о повышенной концентрации каких-то веществ, называют индикаторами. Их изучением занимается индикационная геоботаника.

Геофизические методы поисков.

Кажется, что физика и геология довольно далекие друг от друга науки. Но если бы геологам не помогала физика, то не были бы открыты многие месторождения железа, нефти, меди и других полезных ископаемых. Молодая наука - геофизика - изучает физические свойства Земли и физические процессы, происходящие в ней. С помощью геофизических приборов невидимое становится видимым. Например, сердце человека нельзя увидеть простым глазом, а с помощью рентгеновского аппарата это сделать очень просто. Так же и в геологии: то, что под землей не увидит глаз, "увидят" сложные геофизические приборы. Эти приборы отмечают различие в магнитных, электрических и других свойствах горных пород и руд. Магнитометрический метод поисков. Вы знаете, что вокруг магнита всегда есть невидимое магнитное поле. Если стрелка компаса отклоняется от обычного положения, то можно предположить, что здесь в глубине Земли есть залежи железных руд, которые ее притягивают. И с какой бы стороны мы ни подходили с компасом, стрелка будет направляться на рудную залежь. Так же ведет себя и магнитная стрелка аэромагнитометра, установленного на самолете, пролетающем вблизи залежи.

Интересна история открытия магнитных железных руд в Казахстане летчиком М. Сургутановым. В один из рейсов он обнаружил, что компас перестал правильно показывать направление: магнитная стрелка начала "плясать". Сургутанов предположил, что это связано с магнитной аномалией. В следующие рейсы, пролетая над районом аномалии, он отмечал на карте места максимальных отклонений стрелки компаса. О своих наблюдениях летчик сообщил в местное геологическое управление, экспедиция которого заложила скважины и вскрыла на глубине нескольких десятков метров мощную залежь железных руд - Соколовское месторождение. Затем была вскрыта вторая залежь - Сарбайская.

По отклонению магнитной стрелки от обычного положения были найдены крупнейшие запасы железных руд в районе Курска и некоторых других местах. Если руды немного или она залегает на большой глубине, то обычная магнитная стрелка ее не "почувствует"; в таких случаях применяют другие, более тонкие и сложные физические приборы. Но сильными магнитными свойствами обладают только железные руды. Многочисленные полезные ископаемые немагнитны, и для их поисков метод магниторазведки непригоден.

Гравиметрический метод поисков. Этот метод получил название от латинского слова "гравитас" - тяжесть. Гравиметрия - наука, изучающая изменение ускорения силы тяжести в различных точках Земли. Сила тяготения действует на Земле всюду, но величина ее неодинакова. Чем тяжелее предмет, тем сильнее он к себе притягивает. В глубине Земли и в горах находятся породы и руды, которые сильно различаются по своей плотности. Например, кусок свинцовой руды в полтора-два раза тяжелее, чем вес такого же по объему куска гранита или мрамора. Следовательно, руда притягивает к себе сильнее, чем залегающая рядом с ней порода. А соль или гипс имеют значительно меньшую плотность, поэтому над залежами солей величина силы притяжения будет меньше. Можно искать месторождения по изменению величины силы притяжения. Для этого создан специальный прибор, который определяет силу тяготения. Его называют гравитационным вариометром. Он состоит из коромысла, подвешенного на тонкой кварцевой нити. На концах коромысла находятся два шарика - один закрепляется непосредственно на одном конце коромысла, а другой - на длинной нити. Когда прибор находится вблизи тяжелой массы, например рудной залежи, то шарик, подвешенный на нити, притягивается к залежи, поворачивает коромысло, а вместе с ним и кварцевую нить, на которой подвешено коромысло. Зная, в каком направлении и насколько повернется коромысло, можно определить, в каком месте находится залежь и велика ли она.

Следует заметить, что подобным путем измеряется не абсолютная величина ускорения силы тяжести, а только относительная - выясняется, насколько изменяются показания гравитационного вариометра в двух соседних пунктах. Перемещая прибор по поверхности земли и производя измерения в различных участках, можно с достаточной точностью определить положение и форму рудной залежи. Подземные залежи тяжелых руд и горных пород, обладающих повышенной плотностью, могут быть найдены и с помощью специального, очень чувствительного маятника, который вблизи тяжелых масс начинает качаться быстрее. Гравитационные вариометры, идею устройства которых предложил 200 лет назад М. В. Ломоносов, в наше время широко применяются при поисках руд. Гравиметрическим способом открыто уже много рудных залежей.

А что делать, если полезные ископаемые не тяжелее горных пород или руды так мало, что ее не может обнаружить гравитационный вариометр, и если руда немагнитная? Тогда геологи ищут месторождения с помощью электрического тока. Электрометрический метод поисков. Многие руды хорошо проводят электричество. Это их свойство используется при поисках месторождений. Там, где по соображениям геологов на глубине находится рудное тело, проводят разведку электрическим током. Для этого в землю забивают два железных кола, расположенных один от другого на расстоянии 30-50 м. От них идут провода к измерительному прибору. Электрический ток течет от батареи к одному из кольев, далее проходит через землю и доходит до другого колышка, а от него по проводу возвращается к прибору. Из физики мы знаем, что чем больше сопротивление вещества, тем меньше сила тока. Проводя исследования в разных местах и отмечая показания прибора, можно определить, что на одном из участков сила тока меньше, следовательно, здесь залегают граниты, мраморы, глины, пески, т. е. породы с большим сопротивлением, а на другом участке сила тока оказалась большей, поэтому возможно, что ток прошел через руду, сопротивление которой меньше. В этих местах можно вести поиски руды.

Если грунтовые воды с растворенными в них слабыми кислотами соприкасаются с рудой, то возникают естественные электрические токи. Измеряя силу этих токов в горных породах, окружающих рудную залежь, определяют положение залежи. Но есть руды, которые не проводят электричество, не обладают и магнитными свойствами. Как искать эти руды? И в этом случае геофизики помогают геологам. Сейсмометрический метод поисков. Солнечные лучи просвечивают воду насквозь. А можно ли "просветить" насквозь землю и получить отражение от пород, находящихся на различных глубинах? Оказывается, можно с помощью искусственных землетрясений. Этот способ основан на том, что сейсмические волны с разной скоростью проходят через породы различной плотности.

От места взрыва сейсмические волны идут через горные породы вглубь до тех пор, пока не встретят более плотные породы иного состава, при этом часть волн, преломившись, пойдет дальше вглубь, а часть отразится от границы этих пород и придет на поверхность земли. Возвратившиеся волны улавливаются приборами - сейсмографами. Геофизики определяют, сколько времени шли эти волны, а затем вычисляют, на какой глубине и от пород какой плотности они отразились. Позже на поверхность возвращаются волны, отразившиеся от более глубоких слоев. Определяют и глубину их проникновения. Так получают сейсмограмму - запись показаний сейсмографов. По ней узнают, на какой глубине залегают какие породы и лежат они горизонтально или образуют складки.

Сейсмометрический метод - практически основной метод поисковой геофизики. С его помощью открыты почти все новые месторождения нефти и некоторые месторождения других полезных ископаемых.

Радиометрический метод поисков. Для поисков радиоактивных руд применяют особый метод, потому что у этих руд есть присущие только им свойства: они постоянно излучают очень активные гамма-лучи. Ученые создали сложные приборы - радиометры, которые "чувствуют" удары этих частиц и дают о них сигналы: на приборах зажигаются лампочки, отклоняется стрелка или раздается звуковой сигнал.

Радиоактивные элементы, такие, как радий, торий, калий, могут присутствовать в рассеянном состоянии в некоторых породах, содержащих руду. Геологи с помощью приборов выявляют площади с повышенной радиоактивностью и места, где она не наблюдается; эти данные наносят на карту и определяют местоположение различных радиоактивных пород. Геологи, пролетая на самолете над районами поисков, с помощью приборов определили участки повышенной радиоактивности и находящиеся вместе с ними оловорудные месторождения.

Разведка месторождений.

В районах, где геологи-поисковики обнаружили существенные признаки полезных ископаемых, проводят поисково-разведочные работы. Сеть маршрутов сгущается, роют канавы, закладываются шурфы и другие разведочные горные выработки. Если поисково-разведочные работы подтвердили наличие в районе больших скоплений полезных ископаемых, начинается следующий этап работы - разведка. Поиски и разведка тесно связаны между собой, и один вид работ является по существу продолжением и дополнением другого.

Разведка необходима, чтобы выяснить, достаточно ли велики залежи полезного ископаемого для организации добычи. Нужно установить форму и размеры рудных тел, содержание в них полезных ископаемых и на какой глубине залегает то или иное рудное тело. Разведочные работы позволяют получить в большом количестве образцы руд или пробы из различных частей рудного тела. По ним геолог определяет, из каких полезных ископаемых состоит руда, имеются ли нежелательные примеси. Зная объем рудной залежи и содержание в ней металла, выявленного путем химического анализа, определяют запасы месторождений. Разведочные работы начинаются с составления подробной геологической карты месторождения. Затем проводятся горные работы и бурение разведочных скважин.

Если рудные тела находятся вблизи поверхности и закрыты лишь почвенным слоем, то роют на определенном расстоянии одна от другой канавы глубиной 1-2 м, но если рудная залежь закрыта наносами, мощность которых 5-10 и более метров, то копают похожие на колодцы шурфы. Стенки их укрепляют деревянными брусьями и досками, чтобы рыхлые породы не завалили выработку и людей. Шурфы располагаются в строгом порядке на определенном расстоянии один от другого, таким образом, чтобы все рудное тело было вскрыто.

Если рудные скопления расположены в горном хребте или в горе с крутыми склонами, то месторождение вскрывают горизонтальной горной выработкой - штольней (похожей на тоннель), которая проходит внутрь горы со стороны ее крутого склона до тех пор, пока не пересечет рудное тело. Затем из штольни через равные промежутки в рудном теле поперек его от одного конца до другого пробиваются другие выработки. В результате все месторождение оказывается пересеченным насквозь сетью подземных горных выработок. Благодаря этому выясняется форма рудного тела. В равнинной местности рудные тела могут залегать на глубине 100-200 и более метров. В этих случаях для добычи полезных ископаемых пробивают шахты. В них для спуска людей и подъема руды устраивают специальные лифты - клети. В шахтах на разных уровнях через определенные расстояния пробивают горизонтальные горные выработки в сторону рудного тела. От них, как и от штолен, примерно через равные промежутки проходят мелкие выработки, пересекающие насквозь рудное тело.

Для разведки рудных залежей широко применяется бурение скважин. Производится оно специальной трубой с алмазной коронкой, которая, вращаясь, высверливает твердую породу. В трубе остается столбик породы - керн. По нему узнают, какие породы залегают в глубине и где расположено рудное тело. Бурение колонковой трубой обычно производится на глубины в сотни, а иногда свыше 1000 м. При разведке нефтяных залежей приходится иногда бурить скважины глубиной свыше 3 км.

С помощью бурения можно быстро разведать рудную залежь. Но не всегда бывает достаточно тонкого рудного столбика (керна), чтобы уверенно судить о распространении и качестве руды. Горные работы дают значительно более полные сведения о месторождении. Часто скважины бурят возле известных месторождений, чтобы найти новые рудные тела. Как правило, на одном участке группируются несколько рудных тел. Не напрасно еще древние рудокопы говорили: "Ищи руду возле руды", т. е. новое рудное тело ищи возле уже найденного.

геологический ископаемое месторождение

Размещено на Allbest.ru

...

Подобные документы

    Поисковые работы как процесс прогнозирования, выявления и перспективной оценки новых месторождений полезных ископаемых, заслуживающих разведки. Поля и аномалии как современная основа поисков полезных ископаемых. Проблема изучения полей и аномалий.

    презентация , добавлен 19.12.2013

    Состав, условия залегания рудных тел. Формы полезных ископаемых. Жидкие: нефть, минеральные воды. Твердые: угли ископаемые, горючие сланцы, мрамор. Газовые: гелий, метан, горючие газы. Месторождения полезных ископаемых: магматогенные, седиментогенные.

    презентация , добавлен 11.02.2015

    Процесс контактового метасоматоза, приводящий к образованию скарновых месторождений рудных и нерудных полезных ископаемых. Метасоматический процесс и условия залегания скарнов. Морфология, вещественный состав, строение месторождения полезных ископаемых.

    реферат , добавлен 25.03.2015

    Изучение закономерностей образования и геологических условий формирования и размещения полезных ископаемых. Характеристика генетических типов месторождений полезных ископаемых: магматические, карбонатитовые, пегматитовые, альбитит-грейзеновые, скарновые.

    курс лекций , добавлен 01.06.2010

    Характеристика месторождений (Таштагольского железорудного, Пуштулимского мраморного) и Кузнецкого угольного бассейна. Условия образования осадочных месторождений, их виды, форма тел, минеральный состав. Общие сведения о твердых горючих ископаемых.

    контрольная работа , добавлен 15.03.2010

    История разработки месторождений полезных ископаемых и состояние на современном этапе. Общая экономическая цель при открытой разработке. Понятия и методы обогащения полезных ископаемых. Эффективное и комплексное использование минерального сырья.

    курсовая работа , добавлен 24.11.2012

    Общая геологическая характеристика, возраст и генезис образования Ковдорского месторождения. Минеральный состав руд: главные и второстепенные минералы. Полезные и вредные примеси. Влияние структурных и текстурных особенностей на обогатимость руды.

    реферат , добавлен 23.10.2011

    Определение балансовых запасов месторождения полезного ископаемого, производственной мощности и срока существования рудника. Выбор рационального варианта вскрытия и подготовки месторождения. Расчет технологического комплекса отбойки и доставки руды.

    курсовая работа , добавлен 26.11.2011

    Влияние добычи полезных ископаемых на природу. Современные способы добычи полезных ископаемых: поиск и разработка месторождений. Охрана природы при разработке полезных ископаемых. Обработка поверхности отвалов после прекращения открытой выработки.

    реферат , добавлен 10.09.2014

    Отложения каменноугольной системы и нефтяные месторождения на территории Республики Беларусь. Суммарные запасы калийных солей и нерудных полезных ископаемых страны. Мощность полезных пластов железных руд. Характеристика месторождений минеральных вод.