Основные физические свойства жидкостей и газов. Физические свойства жидкостей и газов Общие свойства жидкостей и газов

Текучесть . Жидкие и газообразные тела отличаются от твёрдых тел свойством текучести. Если на твёрдое тело действуют малые неразрушающие силы, то они незначительно меняют его форму, т.е. относительное положение его частей. Если под действием сколь угодно малых внешних сил тело деформируется неограниченно, пока внутренние касательные напряжения в нём не станут равными нулю, то в этом случае реализуется свойство называемое текучестью .

Многие физические тела двойственны по природе. Например, стекло, которое мы привыкли рассматривать как хрупкое твёрдое тело, под действием длительной нагрузки может вести себя как жидкость. Так оконные стёкла, простоявшие более 100 лет в нижней части толще, чем в верхней, так как под действием сил тяжести материал «стекает» вниз. С другой стороны, такая типичная жидкость как вода при быстром нагружении (ударе) ведёт себя как твёрдое тело.

Попытаемся определить природу этой двойственности на молекулярном уровне. Благодаря действию сил притяжения и отталкивания расположение молекул в пространстве носит упорядоченный характер. Среднее характерное расстояние между молекулами жидкости и твёрдого тела примерно одинаковы и равны » (3¸4)10 -8 см. Под действием тепла молекулы движутся (хаотически колеблются) около положения равновесия, увеличивая с температурой амплитуду колебаний. В твёрдых телах амплитуда много меньше расстояния между молекулами, в жидкости - это величины одного порядка. Поэтому колебания молекул, совершаемые с амплитудой того же порядка, что и расстояния, могут приводить к тому, что молекулы могут перескакивать из одного места ячейки в другое. В некоторых жидкостях это случается чаще, в других - реже.

Текучесть тела определяется характерным временем t r нахождения молекулы в каждой ячейке с момента попадания в неё до момента перескакивания в другую ячейку. Если время нахождения молекулы в ячейке много меньше времени действия силы, то за период действия силы молекулы могут многократно изменить своё положение в пространстве, т.е. позволяя силе непрерывно и необратимо деформировать тело (т.е. вести себя как текучая среда). Такое тело мы называем жидкостью . В противном случае мы имеем дело с твёрдым телом. С повышением температуры текучесть тела увеличивается.



Для газообразных тел характерной особенностью является хаотическое движение и столкновение молекул в пространстве. Поэтому газы обладают не только текучестью, но и сжимаемостью.

Сжимаемость жидкостей и газов . Приложим силу DF и увеличим давление в объёме V на величину Dp (рис.1.2). Сплошная среда при этом сожмётся, уменьшив свой объём на величину DV. Эмпирически получено, что связь между изменением объёма и давлением линейна, т.е. для каждой жидкости и газа можно ввести константу, которую называют коэффициентом объёмного расширения (при постоянной температуре):

. (1.3.1)

Коэффициент объёмного сжатия имеет размерность (Па) -1 . Знак минус вводится для того, чтобы отразить уменьшение объёма под действием сжатия, но для практических расчётов удобно иметь его положительным.

Модулем объёмной упругости Е V называется величина, обратная b V:

. (1.3.2)

Обе эти величины зависят от температуры и вида жидкости.Модуль объёмной упругости для воды при Т = 293°К равен Е V = 2×10 9 Па »20000 кгс/см 2 .

Пример . Если на воду помимо атмосферного давления (р а =101325 Па или 1.033 кгс/см 2), будет дополнительно действовать такое же давление, то объём воды уменьшится приблизительно на 1/20000, т.е. практически это заметить невозможно. Следовательно, воду и другие жидкости можно считать несжимаемыми и принимать их плотность постоянной (r = const), не зависящей от давления.

Для газа можно достаточно эффективно использовать модель идеального газа, характеризуемую уравнением Клапейрона - Менделеева

или , (1.3.3)

где R - удельная газовая постоянная, не зависящая от плотности и температуры, но различная в зависимости от природы газа (например, для воздуха R = 287Дж/кгК). С помощью уравнения (1.5.3) можно найти плотность воздуха при атмосферном давлении и температуре окружающей среды равной 20ºС:

.

Из этого закона следует закон Бойля - Мариотта, устанавливающий изотермическую связь между давлением и плотностью:

для заданного объёма газа при постоянной температуре.

Для адиабатического процесса (когда отсутствует теплообмен между выделенным объёмом газа и окружающей средой) характерна следующая зависимость:

, (1.3.5)

где - адиабатическая постоянная газа; с v - теплоёмкость газа при постоянном объёме; с р - то же при постоянном давлении.

Отличие механики жидкости от механики газа . Несмотря на то, что свойство текучести является основным при изучении жидкостей и газа, тем не менее, следует в некоторых случаях отличать жидкости от газов.

· Основное отличие заключается в том, что газ легко сжимается и в нём скорость распространения звука (а следовательно и всех механических возмущений) значительно меньше, чем в жидкости. Эта особенность газа должна учитываться, когда скорость движения (или скорость движения в нём твёрдого тела) становится соизмеримой со скоростью звука или превышает её.

· В отличие от газа жидкость имеет граничную поверхность между ней и окружающим её газом, которая называется свободной поверхностью. В поле сил тяжести свободная поверхность жидкости имеет горизонтальный профиль. В условиях невесомости, благодаря поверхностному натяжению, свободная поверхность сферична. Это свойство жидкости, как и её малая сжимаемость, обусловлено постоянным взаимодействием соседних молекул. В газе молекулы взаимодействуют друг с другом только в момент столкновения, большую часть времени они свободно движутся в пространстве, поэтому вследствие хаотичности движения газ стремится равномерно распределиться по всей замкнутой части пространства. Если пространство не замкнуто, то объём газа может неограниченно возрастать.

· В газе можно неограниченно уменьшать давление и повышать температуру, и при этом свойства газа будут меняться непрерывно. В жидкости давление может уменьшаться до некоторого значения, ниже которого начинается образование внутри неё газовых пузырьков, и начинаются фазовые переходы, которые качественно меняют свойства текучей среды. То же самое может происходить и при повышении температуры жидкости.

Вязкость жидкостей и газов . Реологические свойства жидкостей . Вязкостью называется свойство текучей среды, которое заключается в возникновении в ней внутренних сил, препятствующих её деформации, т.е. изменению относительного положения её частей. Рассмотрим частный случай молекулярно-кинетической теории идеального газа - простое сдвиговое течение (рис.1.3).

Рис.1.3. Вязкие напряжения в жидкостях и газах

Элементарная площадка поверхности, разделяющей слои 1 и 2, движется вместе с жидкостью. При этом слой жидкости 1 скользит по слою 2 с относительной скоростью . Молекулы газа участвуют в движениях двух видов:

· упорядоченном (продольном) со скоростью u х или u х + D u х в зависимости от того, в каком слое они находятся;

· хаотическом, неупорядоченном (в том числе и поперечном) тепловом движении, скорость которого обычно на два порядка выше скорости упорядоченного движения.

Вязкость газа обусловлена переносом молекулами при их тепловом движении через элементарную площадку DхDу, лежащую в плоскости, ко­торая разделяет два слоя, имеющие различные продольные скорости u х и u х + Du х, количества движения, обусловленного разностью Du х скоростей этих слоев. Молекулы движутся хаотически беспорядочно, при этом они переходят из одного слоя в другой, пересекая площадку DхDу. Молекулы, имеющие упорядоченную скорость u х, переходят в слой 2 и замедляют его движение, а такое же количество молекул, попавшее в слой 1 из слоя 2, ускоряет слой 1.

Вводя модель сплошной среды (т.е. исключая из рассмотрения мо­лекулярное строение вещества), считают, что на площадке DхDу действу­ет касательное напряжение, компенсирующее перенос количества дви­жения, обусловленный тепловым движением молекул. Согласно молеку-лярно-кинетической теории касательное напряжение

(1.3.6)

где h - динамический коэффициент вязкости , или просто динамическая вяз­кость газа. Это гидродинамическая характеристика, определяемая физичес­кими свойствами текучей среды. Знак напряжения таков, как будто оно "пы­тается" уменьшить разность скоростей слоев. С увеличением температуры ско­рость хаотического движения молекул возрастает, что приводит к увеличению количества молекул, пересекающих в единицу времени площадку DхDу; следовательно, увеличивается и перенос количества движения из одного слоя в другой и, соответственно, касательное напряжение p zx . Соглас­но (1.3.6) это означает, что с увеличением температуры динамический ко­эффициент вязкости газа возрастает.

В жидкости основной причиной воздействия одного слоя на другой (т.е. переноса количества движения) является взаимодействие молекул, рас­положенных по разные стороны границы между слоями, а не перенос молекул через эту границу. Как уже отмечалось, молекулярно-кинетическая теория жидкости еще недостаточно развита, поэтому механизм вязкости в жидкости изучен значительно хуже, чем в газах. Обычно считают, что в жидкости непрерывно образуются и разрушаются при относительном сколь­жении слоев квазикристаллические структуры, а силы, необходимые для их разрушения, и обусловливают вязкость. Естественно, с увеличением темпе­ратуры молекулы жидкости становятся более подвижными и разрушение структур происходит при меньших значениях сдвигающих сил. Таким об­разом, динамический коэффициент вязкости жидкости с увеличением тем­пературы уменьшается (в отличие от газов - см. выше).

Несмотря на различный молекулярный механизм возникновения на­пряжений в жидкостях и в газах, в обеих этих средах касательные напря­жения связывают с изменчивостью поля скорости одной и той же зависи-

мостью (1.3.6), которая называется законом Ньютона для вязких напряже­ний. В отличие от закона для сухого трения сдвиговое касательное напря­жение в жидкостях и газах не зависит от нормального напряжения.

Согласно определению (1.3.6) динамический коэффициент вязкости h имеет следующую единицу измерения:

.

Размерность h выражается через размерности напряжения Па и вре­мени с. Иногда в качестве единицы h используют г/см×с, которая называ­ется пуаз (в честь французского врача А. Пуазейля, выполнившего фунда­ментальные исследования движения вязкой жидкости) и обозначается П:

Па×с = 10×П.

Зависимость (1.3.6) характеризует перенос поперек потока количе­ства движения слоев текучей среды, которое пропорционально как ско­рости u х, так и плотности текучей среды r. Имея это в виду, закон Нью­тона целесообразно представить в форме

,

. (1.3.7)

Эта величина имеет размерность

.

Ввиду того, что в размерность n входят только метры и секунды (и не входит размерность массы), эту величину называют кинематическим коэф­фициентом вязкости (или кинематической вязкостью). Размерность см 2 /с называется стокс (в честь английского гидромеханика Дж. Стокса, кото­рый сформулировал дифференциальные уравнения движения вязкой жид­кости), и обозначается Ст:

1Ст = 10 -4 м 2 /с.

В заключение отметим, что в газах и вязкость (характеризующая пере­нос количества движения), и молекулярная диффузия (характеризующая пе­ренос инородного газа) обусловлены тепловым хаотическим движением мо­лекул. Поэтому коэффициент вязкости n имеет один порядок величины с коэффициентом молекулярной диффузии в законе Фика. В жидкостях вяз­кость (и связанный с этим перенос количества движения) обусловлена раз­рушением межмолекулярных связей, а диффузия - тепловым движением молекул, т.е. эти явления имеют различную физическую природу. Как следствие этого коэффициент диффузии в жидкости в сотни раз меньше коэффициента вязкости n.В табл. 1.1 приведены значения h, r, n­ для некоторых жидкостей и газов.

Таблица 1.1

Значения h, r, n­ для некоторых жидкостей и газов

Из приведенных значений коэффициентов вязкости следует, что вязкость воды уменьшается с увеличением температуры от 0 до 100° Спочти в семь раз, а вязкость воздуха возрастает с увеличением темпе­ратуры от 20 до 50°С на 25%.

Для расчетов в инженерной практике пользуются ориентировочным значением кинематического коэффициента вязкости воды n = 0,01 см 2 /с = 0,01 Ст. Жидкости, для которых справедлива зависимость (1.3.6), называются ньютоновскими.

Однако существует много жидкостей, для которых закон Ньютона не выполняется. Наука о характере зависимости называется реологией (греч. reo - течь, logos - учение). Если представить зависимость (1.3.6) в виде графика (рис.1.4), то она будет иметь вид прямой линии 1.

При экспериментальном исследовании некоторых жидкостей может иметь вид кривой 2. Такие жидкости, которые сопротивля­ются небольшим (p zx < ) сдвигающим напряжениям, как твердое тело, а при (p zx > ) ведут себя как жидкие тела, называются жидкостями Бингама - Шведова.

Жидкости, поведение которых описывается кривыми 3, 4, называют­ся жидкостями Оствальда - Вейля. Если они подчиняются зависимостям 3, то они называются псевдопластическими, а если следуют зависимости 4 - дилатантными. Механика движения таких жидкостей (это смолы, нефтепродукты, растворы полимеров и т.п.) очень сложна.

Известно, что все, что окружает человека, включая и его самого, - это тела, состоящие из веществ. Те, в свою очередь, построены из молекул, последние из атомов, а они - из еще более мелких структур. Однако окружающее разнообразие столь велико, что сложно представить даже какую-то общность. Так и есть. Соединения исчисляются миллионами, каждое из них уникально по свойствам, строению и выполняемой роли. Всего выделяют несколько фазовых состояний, по которым можно соотнести все вещества.

Агрегатные состояния веществ

Можно назвать четыре варианта агрегатного состояния соединений.

  1. Газы.
  2. Твердые вещества.
  3. Жидкости.
  4. Плазма - сильно разреженные ионизированные газы.

В данной статье мы рассмотрим свойства жидкостей, особенности их строения и возможные параметры характеристик.

Классификация жидких тел

В основу данного деления положены свойства жидкостей, их структура и химическое строение, а также типы взаимодействий между составляющими соединения частицами.

  1. Такие жидкости, которые состоят из атомов, удерживающихся между собой силами Ван-дер-Ваальса. Примерами могут служить жидкие газы (аргон, метан и другие).
  2. Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газы в сжиженном виде - водород, азот, кислород и другие.
  3. - ртуть.
  4. Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: хлороводород, йодоводород, сероводород и прочие.
  5. Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.

Существуют и особенные структуры - типа неньютоновских жидкостей, которые обладают особыми свойствами.

Мы же рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь это такие, которые принято называть физическими.

Свойства жидкостей: форма и объем

Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.

Самые первые жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.

Под действием всем известной капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: "Назовите свойства жидкостей" человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.

Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда.

Вязкость

Физические свойства жидкости весьма разнообразны. Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:

  • касательное напряжение;
  • градиент скорости движения.

Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, - это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).

В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем.

От чего же будет зависеть данный показатель?

  1. От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
  2. От давления. Повышение вызывает увеличение показателя вязкости.
  3. От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.

Теплоемкость

Этот термин определяет способность вещества поглощать определенное количество тепла для увеличения собственной температуры на один градус по Цельсию. Существуют разные соединения по данному показателю. Одни обладают большей, другие меньшей теплоемкостью.

Так, например, вода - очень хороший теплонакопитель, что позволяет ее широко использовать для систем отопления, приготовления пищи и прочих нужд. В целом, показатель теплоемкости строго индивидуален для каждой отдельно взятой жидкости.

Поверхностное натяжение

Часто, получив задание: "Назовите свойства жидкостей" сразу вспоминают о поверхностном натяжении. Ведь с ним детей знакомят на уроках физики, химии и биологии. И каждый предмет объясняет этот важный параметр со своей стороны.

Классическое определение поверхностного натяжения следующее: это граница раздела фаз. То есть в то время, когда жидкость заняла определенный объем, она снаружи граничит с газовой средой - воздухом, паром или еще каким-либо веществом. Таким образом, на месте соприкосновения возникает разделение фаз.

При этом молекулы стремятся окружить себя как можно большим числом частиц и, таким образом, приводят как бы к сжиманию жидкости в целом. Следовательно, поверхность словно натягивается. Этим же свойством можно объяснить и шарообразную форму капель жидкости при отсутствии воздействия сил тяжести. Ведь именно такая форма идеальна с точки зрения энергии молекулы. Примеры:

  • мыльные пузыри;
  • кипящая вода;
  • капли жидкости в невесомости.

Некоторые насекомые приспособились к "хождению" по поверхности воды именно благодаря поверхностному натяжению. Примеры: водомерки, водоплавающие жуки, некоторые личинки.

Текучесть

Есть общие свойства жидкостей и твердых тел. Одно из них - текучесть. Вся разница в том, что для первых она неограниченна. В чем заключается суть этого параметра?

Если приложить внешнее воздействие к жидкому телу, то оно разделится на части и отделит их друг от друга, то есть перетечет. При этом каждая часть снова заполнит весь объем сосуда. Для твердых тел это свойство ограниченно и зависит от внешних условий.

Зависимость свойств от температуры

К таковым можно отнести три параметра, характеризующие рассматриваемые нами вещества:

  • перегрев;
  • охлаждение;
  • кипение.

Такие свойства жидкостей, как перегревание и переохлаждение, напрямую связаны с (точками) кипения и замерзания соответственно. Перегревшейся называют жидкость, которая преодолела порог критической точки нагревания при воздействии температуры, однако внешних признаков кипения не подала.

Переохлажденной, соответственно, называют жидкость, которая преодолела порог критической точки перехода в другую фазу под воздействием низких температур, однако твердой не стала.

Как в первом, так и во втором случае есть условия для проявления таких свойств.

  1. Отсутствие механических воздействий на систему (движение, вибрация).
  2. Равномерная температура, без резких скачков и перепадов.

Интересен факт, что если в перегретую жидкость (например, воду) бросить посторонний предмет, то она мгновенно вскипит. Получить же ее можно нагреванием под воздействием излучения (в микроволновой печи).

Сосуществование с другими фазами веществ

Можно выделить два варианта по данному параметру.


В целом изучением взаимодействия жидкостей с соединениями в других агрегатных состояниях занимается дисциплина гидроаэромеханика.

Сжимаемость

Основные свойства жидкости были бы неполными, если бы мы не упомянули о сжимаемости. Конечно, этот параметр больше характерен для газовых систем. Однако и рассматриваемые нами также могут поддаваться сжатию при определенных условиях.

Главное отличие - это скорость процесса и его равномерность. Если газ можно сжать быстро и под небольшим давлением, то жидкости сжимаются неравномерно, достаточно долго и при специально подобранных условиях.

Испарение и конденсация жидкостей

Это еще два свойства жидкости. Физика дает им следующие объяснения:

  1. Испарение - э то процесс, который характеризует постепенный переход вещества из жидкого агрегатного состояния в твердое. Происходит это под действием тепловых воздействий на систему. Молекулы приходят в движение и, меняя свою кристаллическую решетку, переходят в газообразное состояние. Процесс может происходить до тех пор, пока вся жидкость не перейдет в пар (для открытых систем). Или же до установления равновесия (для замкнутых сосудов).
  2. Конденсация - процесс, противоположный выше обозначенному. Здесь пар переходит в молекулы жидкости. Так происходит до установления равновесия или полного фазового перехода. Пар отдает в жидкость большее количество частиц, чем она ему.

Типичные примеры этих двух процессов в природе - испарение воды с поверхности Мирового океана, конденсация ее в верхних слоях атмосферы, а затем выпадение в виде осадков.

Механические свойства жидкости

Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно - ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:

  • плотность;
  • удельный вес;
  • вязкость.

Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.

Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь - одна из самых распространенных агрегатных форм на нашей планете.

Неньютоновские жидкости и их свойства

Свойства газов, жидкостей, твердых тел - это объект изучения физики, а также некоторых смежных с ней дисциплин. Однако помимо традиционных жидких веществ, существуют еще и так называемые неньютоновские, их тоже изучает эта наука. Что они собой представляют и почему получили такое название?

Для понимания того, что собой представляют подобные соединения, приведем самые распространенные бытовые примеры:

  • "лизун", которым играют дети;
  • "хенд гам", или жвачка для рук;
  • обычная строительная краска;
  • раствор крахмала в воде и прочее.

То есть это такие жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее воздействие, тем выше показатель вязкости. Поэтому при резком ударе хенд гама об пол он превращается в совершенно твердое вещество, способное расколоться на части.

Если же оставить его в покое, то буквально через несколько минут он растечется липкой лужицей. - достаточно уникальные по свойствам вещества, которые нашли применение не только в технических целях, но и в культурно-бытовых.

Строение газов, жидкостей и твердых тел. Особенности структуры растворов. Понятие о «реактивном поле»
Теория строения жидкостей: сравнение со структурой газов и твердых тел Строение (структура) жидкостей. Структура жидкостей является в настоящее время предметом пристального изучения физико-химиков. Для исследований в этом направлении используются самые современные методы, включая спектральные (ИК, ЯМР, рассеивание света различных длин волн), рассеивание ренгеновских лучей, квантово-механических и статистических методов расчета и т.д. Теория жидкостей разработана гораздо хуже, чем газов, поскольку свойства жидкостей зависят от геометрии и полярности взаимно близко расположенных молекул. Кроме того, отсутствие определенной структуры жидкостей затрудняет их формализованное описание – в большинстве учебников жидкостям уделено гораздо меньше места, чем газам и твердым кристаллическим веществам. Каковы же особенности каждого из трех агрегатных состояний вещества: твердого тела, жидкости и газа. (таблица)
1) Твердое: тело сохраненяет объем и форму
2) Жидкость сохраняют объем, но легко меняют форму.
3) Газ не имеют ни формы ни объема.

Эти состояния одного и того же вещества различаются не сортностью молекул (она одинакова), а тем как молекулы расположены и движутся.
1) В газах расстояние между молекулами много больше размеров самих молекул
2) Молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях сохраняет свой объем.
3) Частицы твердых тел расположены в определенном порядке. Каждая из частиц движется около определенной точки в кристаллической решетке, подобно маятнику часов, т. е. колеблется.
При понижении температуры жидкости затвердевают, а при повышении выше температуры кипения переходят в газообразное состояние. Уже этот факт указывает на то, что жидкости занимают промежуточное положение между газами и твердыми телами, отличаясь от того и другого. Однако жидкость имеет черты сходства с каждым из этих состояний.
Существует такая температура, при которой граница между газом и жидкостью полностью исчезает. Это, так называемая, критическая точка. Для каждого газа известна температура, выше которой он не может быть жидким ни при каком давлении; при этой критической температуре исчезает граница (мениск) между жидкостью и ее насыщенным паром. Существование критической температуры ("температуры абсолютного кипения") установил Д.И.Менделеев в 1860 г. Второе свойство, объединяющее жидкости и газы – это изотропность. Т.е., на первый взгляд можно предположить, что жидкости ближе к газам, чем к кристаллам. Так же как и газы, жидкости изотропны, т.е. их свойства во всех направлениях одинаковы. Кристаллы, напротив, анизотропны: показатель преломления, сжимаемость, прочность и многие другие свойства кристаллов в разных направлениях оказываются различными. Твердые кристаллические вещества обладают упорядоченной структурой с повторяющимися элементами, что позволяет исследовать их методом дифракции рентгеновских лучей (метод рентгеноструктурного анализа, используется с 1912 г.).

Что общего у жидкостей и газов?
А) Изотропность. Свойства жидкости, как и у газов, одинаковы во всех направлениях, т.е. изотропны, в отличие от кристаллов, которые анизотропны.
Б) Жидкости, подобно газам, не имеют определенной формы и принимают форму сосуда (низкая вязкость и высокая текучесть).
Молекулы и жидкости и газа совершают достаточно свободные перемещения, сталкиваясь друг с другом. Раньше считалось, что в пределах объема, занимаемого жидкостью, любое расстояние, превышающее сумму их радиусов, принималось равновероятным, т.е. тенденция к упорядоченному расположении молекул отрицалось. Тем самым, жидкости и газы в известной степени противопоставлялись кристаллам.
По мере развития исследований все большее число фактов указывало на наличие сходства между строением жидкостей и твердых тел. Например, значения теплоемкостей и коэффициентов сжимаемости, особенно вблизи температуры плавления, практически совпадают друг с другом, тогда как эти величины для жидкости и газа резко отличаются.
Уже из этого примера можно заключить, что картина теплового движения в жидкостях при температуре близкой к температуре затвердевания, напоминает собой тепловое движение в твердых телах, а не в газах. Наряду с этим, можно отметить и такие существенные различия между газообразным и жидким состоянием вещества. В газах молекулы распределены по пространству совершенно хаотично, т.е. последний считается примером бесструктурного образования. Жидкость все же имеет определенную структуру. Экспериментально это подтверждается дифракцией ренгеновских лучей, которая показывает, по крайней мере, один четкий максимум. Структура жидкости – это способ распределения ее молекул в пространстве. Таблица иллюстрирует сходства и различия газового и жидкого состояний.
Газовая фаза Жидкая фаза
1. Расстояние между молекулами l обычно (для невысоких давлений) много больше радиуса молекулы r: l  r ; практически весь объем V, занятый газом, есть свободный обьем. В жидкой фазе, наоборот, l 2. Средняя кинетическая энергия частиц, равная 3/2kT , больше потенциальной энергии U их межмолекулярного взаимодействия Потенциальная энергия взаимодействия молекул больше средней кинетической энергии их движения: U3/2 kT
3. Частицы сталкиваются при их поступательном движении, фактор частоты столкновений зависит от массы частиц, их размеров и температуры Каждая частица совершает колебательное движение в клетке, которую создают окружающие ее молекулы. Амплитуда колебания a зависит от свободного обьема, a  (Vf/ L)1/3
4. Диффузия частиц происходит в результате их поступательного движения, коэффициент диффузии D  0,1 - 1 см2/c (p  105 Па) и зависит от давления газа
(D  p-1) Диффузия происходит в результате перескока частицы из одной клетки в другую с энергией активации ED,
D  e-ED/RT в невязких жидкостях
D  0,3 - 3 см2/сут.
5. Частица свободно вращается, частота вращения r определяется только моментами инерции частицы и температурой, частота вращений r T1/2 Вращение заторможено стенками клетки, поворот частицы сопровождается преодолением потенциального барьера Er, который зависит от сил межмолекулярного взаимодействия, vr  e-Er /RT
Однако, жидкое состояние по ряду важных показателей близко к твердому (квазикристалличность). Накопление экспериментальных фактов указывало на то, что у жидкостей и кристаллов много общего. Физико-химические исследования индивидуальных жидкостей показали, что почти все они обладают некоторыми элементами кристаллической структуры.
Во-первых, межмолекулярные расстояния в жидкости близки к таковым в твердом теле. Это доказывается тем, что при плавлении последнего объем вещества изменяется незначительно (обычно он увеличивается не более чем на 10%). Во-вторых, энергия межмолекулярного взаимодействия в жидкости и в твердом теле отличается незначительно. Это следует из того факта, что теплота плавления много меньше теплоты испарения. Например, для воды Hпл= 6 кДж/моль, а Hисп= 45 кДж/моль; для бензола Hпл= 11 кДж/моль, а Hисп = 48 кДж/моль.
В-третьих, теплоемкость вещества при плавлении меняется очень слабо, т.е. она близка для этих обоих состояний. Отсюда следует, что характер движения частиц в жидкости близок к таковому в твердом теле. В-четвертых, жидкость, как и твердое тело, выдерживает без разрыва большие растягивающие усилия.
Различие между жидкостью и твердым телом заключается в текучести: твердое тело сохраняет свою форму, жидкость даже под влиянием небольшого усилия легко ее меняет. Эти свойства вытекают из таких особенностей строения жидкости, как сильное межмолекулярное взаимодействие, ближний порядок в расположении молекул и способность молекул сравнительно быстро менять свое положение. При нагревании жидкости от температуры замерзания до температуры кипения ее свойства плавно меняются, с нагреванием постепенно усиливаются ее черты сходства с газом.
Каждый из нас без труда припомнит немало веществ, которые он считает жидкостями. Однако дать точное определение этого состояния вещества не так-то просто, поскольку жидкости обладают такими физическими свойствами, что в одних отношениях они напоминают твердые тела, а в других – газы. Наиболее ярко сходство между жидкостями и твердыми телами проявляется у стеклообразных материалов. Их переход от твердого состояния к жидкому при повышении температуры происходит постепенно, а не как ярко выраженная температура плавления, они просто становятся все более мягкими, так что нельзя указать, в каком температурном интервале их следует назвать твердыми телами, а в каком – жидкостями. Можно лишь сказать, что вязкость стеклообразного вещества в жидком состоянии меньше, чем в твердом. Твердые стекла поэтому часто называют переохлажденной жидкостью. По-видимому, наиболее характерным свойством жидкостей, отличающим их от твердых тел, является низкая вязкость, т.е. высокая текучесть. Благодаря ей они принимают форму сосуда, в который налиты. На молекулярном уровне высокая текучесть означает относительно большую свободу частиц жидкости. В этом жидкости напоминают газы, хотя силы межмолекулярного взаимодействия жидкостей больше, молекулы расположены теснее и более ограничены в своем движении.
К сказанному можно подойти и иначе – с точки зрения представления о дальнем и ближнем порядке. Дальний порядок существует в кристаллических твердых телах, атомы которых расположены строго упорядоченно, образуя трехмерные структуры, которые можно получить многократным повторением элементарной ячейки. В жидкости и стекле дальний порядок отсутствует. Это, однако, не означает, что они вообще не упорядочены. Число ближайших соседей у всех атомов практически одинаково, но расположение атомов по мере их удаления от какой-либо выделенной позиции становится все более и более хаотичным. Таким образом, упорядоченность существует лишь на малых расстояниях, отсюда и название: ближний порядок. Адекватное математическое описание структуры жидкости может быть дано лишь с помощью статистической физики. Например, если жидкость состоит из одинаковых сферических молекул, то ее структуру можно описать радиальной функцией распределения g(r), которая дает вероятность обнаружения какой-либо молекулы на расстоянии r от данной, выбранной в качестве точки отсчета. Экспериментально эту функцию можно найти, исследуя дифракцию рентгеновских лучей или нейтронов, а с появлением быстродействующих компьютеров ее стали вычислять методом компьютерного моделирования, основываясь на имеющихся данных о природе сил, действующих между молекулами, или на предположениях об этих силах, а также на законах механики Ньютона. Сравнивая радиальные функции распределения, полученные теоретически и экспериментально, можно проверить правильность предположений о природе межмолекулярных сил.
В органических веществах, молекулы которых имеют удлиненную форму, в том или ином интервале температур иногда обнаруживаются области жидкой фазы с дальним ориентационным порядком, который проявляется в тенденции к параллельному выстраиванию длинных осей молекул. При этом ориентационная упорядоченность может сопровождаться координационной упорядоченностью центров молекул. Жидкие фазы такого типа обычно называют жидкими кристаллами. Жидкокристаллическое состояние – промежуточное между кристаллическим и жидким. Жидкие кристаллы обладают одновременно текучестью и анизотропией (оптической, электрической, магнитной). Иногда это состояние называют мезоморфным (мезофазой) – из-за отсутствия дальнего порядка. Верхний предел существования – температура просветления (изотропная жидкость). Термотропные (мезогенные) ЖК существуют выше определенной температуры. Типичные – цианобифенилы. Лиотропные – при растворении, например, водные растворы мыл, полипептидов, липидов, ДНК. Изучение жидких кристаллов (мезофаза – плавление в две стадии – мутный расплав, потом прозрачный, переход из кристаллической фазы в жидкую через промежуточную форму с анизотропными оптическими свойствами) важно для целей технологии – жидкокристаллическая индикация.
Молекулы в газе движутся хаотично (беспорядочно). В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Молекулы в газе движутся с большими скоростями (сотни м/с). Сталкиваясь, они отскакивают друг от друга как абсолютно упругие шарики, изменяя величину и направление скоростей. При больших расстояниях между молекулами силы притяжения малы и не способны удержать молекулы газа друг возле друга. Поэтому газы могут неограниченно расширяться. Газы легко сжимаются, среднее расстояние между молекулами при этом уменьшается, но все равно остается большим их размеров. Газы не сохраняют ни формы, ни объема, их объем и форма совпадают с объемом и формой сосуда, который они заполняют. Многочисленные удары молекул о стенки сосуда создают давление газа.
Атомы и молекулы твердых тел колеблются около определенных положений равновесия. Поэтому твердые тела сохраняют и объем, и форму. Если мысленно соединить центры положений равновесия атомов или ионов твердого тела, то получится кристаллическая решетка.
Молекулы жидкости расположены почти вплотную друг к другу. Поэтому жидкости очень плохо сжимаются и сохраняют свой объем. Молекулы жидкости совершают колебания около положения равновесия. Время от времени молекула совершает переходы из одного оседлого состояния в другое, как правило, в направлении действия внешней силы. Время оседлого состояния молекулы мало и с ростом температуры уменьшается, а время перехода молекулы в новое оседлое состояние еще меньше. Поэтому жидкости текучи, не сохраняют своей формы и принимают форму сосуда, в который налиты.

Кинетическая теория жидкостей Разработанная Я. И. Френкелем кинетическая теория жидкости рассматривает жидкость как динамическую систему частиц, напоминающую отчасти кристаллическое состояние. При температурах, близких к температуре плавления, тепловое движение в жидкости сводится в основном к гармоническим колебаниям частиц около некоторых средних положений равновесия. В отличие от кристаллического состояния эти положения равновесия молекул в жидкости имеют для каждой молекулы временный характер. Поколебавшись около одного положения равновесия в течение некоторого времени t, молекула перескакивает в новое положение, расположенное по соседству. Такой перескок происходит с затратой энергии U, поэтому время “оседлой жизни“ t зависит от температуры следующим образом: t = t0 eU/RT, где t0 - период одного колебания около положения равновесия. Для воды при комнатной температуре t » 10-10с, t0 = 1.4 x 10-12с, т. е. одна молекула, совершив около 100 колебаний, перескакивает в новое положение, где продолжает совершать колебания. Из данных по рассеиванию рентгеновских лучей и нейтронов можно вычислить функцию плотности распределения частиц  в зависимости от расстояния r от одной частицы, выбранной за центр. При наличии дальнего порядка в кристаллическом твердом теле функция (r) имеет ряд четких максимумов и минимумов. В жидкости из-за высокой подвижности частиц сохраняется только ближний порядок. Это четко следует из рентгенограмм жидкостей: функция (r) для жидкости имеет четкий первый максимум, размытый второй и затем (r) = const. Плавление кинетическая теория описывает следующим образом. В кристаллической решетке твердого тела всегда существуют в небольшом количестве вакансии (дырки), медленно блуждающие по кристаллу. Чем ближе температура к температуре плавления, тем выше концентрация “дырок“, и тем быстрее они перемещаются по образцу. В точке плавления процесс образования “дырок“ приобретает лавинообразный кооперативный характер, система частиц становится динамичной, исчезает дальний порядок, появляется текучесть. Решающую роль в плавлении играет образование свободного объема в жидкости, который и делает систему текучей. Важнейшее отличие жидкости от твердого кристаллического тела заключается в том, что в жидкости существует свободный объем, значительная часть которого имеет вид флуктуаций (“дырок“), блуждание которых по жидкости и придает ей такое характерное для нее качество, как текучесть. Число таких “дырок“, их объем и подвижность зависят от температуры. При низкой температуре жидкость, если она не превратилась в кристаллическое тело, становится аморфным твердым телом с очень низкой текучестью из-за уменьшения объема и подвижности “дырок“. Наряду с кинетической теорией в последние десятилетия успешно развивается статистическая теория жидкости.

Структура льда и воды. Наиболее важной и распространенной жидкостью при нормальных условиях является вода. Эта самая распростарненная на Земле молекула! Она является прекрасным растворителем. Например, все биологические жидкости содержат воду. Вода растворяет как многие неорганические (соли, кислоты, основания) и органические вещества (спирты, сахара, карбоновые кислоты, амины). Какова структура этой жидкости? Нам опять придется вернуться к вопросу, который мы рассматривали в первой лекции, а именно, к такому специфическому межмолекулярному взаимодействию, как водородная связь. Вода, как в жидком, так и в кристаллическом виде проявляет аномальные свойства именно из-за наличия множества водородных связей. Какие это аномальные свойства: высокая температура кипения, высокая температура плавления и высокая энтальпия испарения. Посмотрим сначала на график, потом в таблицу, а затем на схему водородной связи между двумя молекулами воды. На самом деле, каждая молекула воды координирует вокруг себя 4 других молекулы воды: две за счет кислорода, как донора двух неподеленных электронных пар на два протонизированных водорода и и две за счет протонизированных водородов, координирующихся с кислородами других молекул воды. На предыдущей лекции я демонстрировал вам слайд с графиками зависимости температуры плавления, кипения и энтальпии испарения гидридов VI группы в зависимости от периода. Эти зависимости имеют явную аномалию для гидрида кислорода. Все эти параметры для воды заметно выше, чем предсказанные из практически линейной зависимости для следующих гидридов серы, селена и теллура. Мы объяснили это существованием водородной связи между протонизированным водородом и акцептором электронной плотности - кислордом. Наиболее успешно водородная связь исследуется с использованием колебательной инфракрасной спектроскопии. Свободная ОН-группа имеет характеристическую энергию колебаний, которая вызывает переменное удлинение и укорочение связи О-Н, давая характеристичную полосу в инфракрасном спектре поглощения молекулы. Однако, если ОН-группа участвует в водородной связи, атом водорода оказывается связанный атомами с обеих сторон и таким образом его колебание «демпфируется» и частота уменьшается. Из следующей таблицы видно, что увеличение силы и «концентрации» водородной связи приводит к уменьшению частоты поглощения. На приведенном рисунке кривая 1 соответствует максимуму инфракрасного спектра поглощения групп О-Н во льду (где все Н-связи завязаны); кривая 2 соответствует максимуму инфракрасного спектра поглощения групп О-Н отдельных молекул Н2О, растворенных в CCl4 (где Н-связей нет - раствор Н2О в CCl4 слишком разбавлен); а кривая 3 соответствует спектру поглощения жидкой воды. Если бы в жидкой воде было бы два сорта О-Н групп - образующие водородные связи и не образующие их - и одни О-Н группы в воде колебались бы так же (с той же частотой), как во льду (где они образуют Н-связи), а другие - как в окружении CCl4 (где они Н-связей не образуют). Тогда спектр воды имел бы два максимума, соответствующие двум состояниям О-Н групп, двум их характерным частотам колебаний: с какой частотой группа колеблется, с такой и поглощает свет. Но "двухмаксимумная" картина не наблюдается! Вместо нее на кривой 3 мы видим один, очень размытый максимум, простирающийся от максимума кривой 1 до максимума кривой 2. Это значит, что все О-Н группы в жидкой воде завязывают водородные связи - но все эти связи имеют иную энергию, «разболтаны» (имеют другую энергетику), причем по-разному. Это показывает, что картина, в которой часть водородных связей в воде разорвана, а часть сохранена, строго говоря, неверна. Однако она столь проста и удобна для описания термодинамических свойств воды, что ею широко пользуются - и мы тоже будем к ней обращаться. Но надо иметь в виду, что она не вполне точна.
Таким образом, ИК-спектроскопия является мощным методом исследования водородной связи и многие сведения о структуре ассоциированных за ее счет жидкостей и твердых тел добыты с помощью этого спектрального метода. В итоге, для жидкой воды льдоподобная модель (модель О.Я. Самойлова) является одной из наиболее общепризнанных. Согласно этой модели жидкая вода имеет нарушенный тепловым движением (свидетельство и следствие теплового движения - броуновское движение, которое впервые наблюдал английский ботаник Роберт Броун в 1827 г. на пыльце под микроскопом) льдоподобный тетраэдрический каркас (каждая молекула воды в кристалле льда связана водородными связями с пониженной энергетикой по сравнению с таковой во льду -«разболтанные» водородные связи) с четырьмя окружающими ее молекулами воды), пустоты этого каркаса частично заполнены молекулами воды, причем молекулы воды, находящиеся в пустотах и в узлах льдоподобного каракаса, энергетически неравноценны.

В отличие от воды, в кристалле льда в узлах кристаллической решетки находятся молекулы воды равноценные по энергии и они могут совершать исключительно колебательные движения. В таком кристалле существует как ближний, так и дальний порядок. В жидкой воде (как для полярной жидкости) некоторые элементы кристаллической структуры сохраняются (причем, даже в газовой фазе молекулы жидкости упорядочивается в небольшие малоустойчивые кластеры), но отсутствует дальний порядок. Таким образом, структура жидкости отличается от структуры газа наличием ближнего порядка, но отличается от структуры кристалла отсутствием дальнего порядка. Наиболее убедительно об этом свидетельствует исследование рассеивания ренгенновских лучей. Три соседа каждой молекулы в жидкой воде расположены в одном слое и находятся на большем от нее расстоянии (0,294 нм), чем четвертая молекула из соседнего слоя (0,276 нм). Каждая молекула воды в составе льдоподобного каркаса образует одну зеркальносимметричную (прочную) и три центральносимметричных (менее прочных) связи. Первая относится к связи между молекулами воды данного слоя и соседних слоев, остальные - к связям между молекулами воды одного слоя. Поэтому четвертая часть всех связей-зеркальносимметричные, а три четверти центральносимметричные. Представления о тетраэдрическом окружении молекул воды привели к выводу о высокой ажурности ее строения и наличии в ней пустот, размеры которых равны или превышают размеры молекул воды.

Элементы структуры жидкой воды. а - элементарный водный тетраэдр (светлые кружки - атомы кислорода, черные половинки - возможные положения протонов на водородной связи); б - зеркальносимметричное расположение тетраэдров; в - центральносимметричное расположение; г - расположение кислородных центров в структуре обычного льда. Вода характеризуется значительными силами межмолекулярного взаимодействия за счет водородных связей, которые образуют пространственную сетку. Как мы говорили на предыдущей лекции, водородная связь обусловлена способностью атома водорода, соединенного с электроотрицательным элементом, образовывать дополнительную связь с электроотрицательным атомом другой молекулы. Водородная связь относительно прочна и составляет несколько 20-30 килоджоулей на моль. По прочности она занимает промежуточное место между энергией Ван-дер-Ваальса и энергией типично ионной связи. В молекуле воды энергия химической связи H-O составляет 456 кДж/моль, а энергия водородной связи H…O 21 кДж/моль.

Соединения водорода
Молекулярный вес Температура,  С
замерзания Кипения
H2Te 130 -51 -4
H2Se 81 -64 -42
H2S 34 -82 -61
H2O 18 0! +100!

Структура льда. Нормальный лед. Пунктир - Н-связи. В ажурной структуре льда видны небольшие полости, окруженные молекулами Н2О.
Таким образом, структура льда - ажурная постройка из молекул воды, связанных между собой лишь водородными связями. Расположение молекул воды в структуре льда обуславливает наличие в структуре широких каналов. В процессе плавления льда молекулы воды "проваливаются" в эти каналы, что объясняет повышение плотности воды по сравнению с плотностью льда. Кристаллы льда встречаются в виде правильных шестиугольных пластинок, таблитчатых выделений и сложных по форме сростков. Структура нормального льда диктуется водородными Н-связями: она хороша для геометрии этих связей (О-Н смотрит прямо на О), но не очень хороша для плотного Вандерваальсового контакта молекул Н2О. Поэтому структура льда ажурна, в нем молекулы Н2О обволакивают микроскопические (размером меньше молекулы Н2О) поры. Ажурность структуры льда приводит к двум хорошо известным эффектам: (1) лед менее плотен, чем вода, он плавает в ней; и (2) под сильным давлением - например, лезвия конька лед подплавляется. Большинство из существующих во льду водородных связей сохраняется и в жидкой воде. Это следует из малости теплоты плавления льда (80 кал/г) по сравнению с теплотой кипения воды (600 кал/г при 0оС). Можно было бы сказать, что в жидкой воде рвется только 80/(600+80) = 12% из существующих во льду Н-связей. Однако эта картина - что часть водородных связей в воде разорвана, а часть сохранена - не совсем точна: скорее, все водородные связи в воде разбалтываются. Это хорошо иллюстрируется следующими экспериментальными данными.

Структура растворов. От конкретного примеров для воды перейдем к другим жидкостям. Разные жидкости отличаются друг от друга размерами молекул и характером межмолекулярных взаимодействий. Таким образом, в каждой конкретной жидкости существует определенная псевдокристаллическая структура, характеризующаяся ближним порядком и, в какой-то степени, напоминающая структуру, получающуюся при замерзании жидкости и превращения ее в твердое тело. При растворении другого вещества, т.е. при образовании раствора, характер межмолекулярных взаимодействий изменяется и появляется новая структура с иным расположением частиц, чем в чистом растворителе. Эта структура зависит от состава раствора и является специфичной для каждого конкретного раствора. Образование жидких растворов обычно сопровождается процессом сольватации, т.е. выстраивание молекул растворителя вокруг молекул растворенного вещества вследствие действия межмолекулярных сил. Различают ближнюю и дальнюю сольватацию, т.е. вокруг молекул (частиц) растворенного вещества образуется первичная и вторичная сольватные оболочки. В первичной сольватной оболочке в непосредственной близости находятся молекулы растворителя, которые движутся вместе с молекулами растворенного вещества. Число молекул растворителя находящихся в первичной сольватной оболочке называется координационным числом сольватации, которое зависит и от природы растворителя и от природы растворенного вещества. В состав вторичной сольватационной оболочки входят молекулы растворителя, которые находятся на значительно больших расстояниях и влияют на протекающие в растворе процессы за счет взаимодействия с первичной сольватной оболочкой.
При рассмотрении стабильности сольватов различают кинетическую и термодинамическую устойчивость.
В водных растворах количественными характеристиками кинетической гидратации (О.Я. Самойлов) служат величины i/ и Ei=Ei-E, где iи  - среднее время пребывания молекул воды в положении равновесия вблизи i-го иона и в чистой воде, а Ei и E – энергия активации обмена и энергия активации процесса самодиффузии в воде. Эти величины связаны между собой приближенным соотношенеим:
i/  exp(Ei/RT) При этом,
если EI  0, i/  1 (обмен ближайших к иону молекул воды происходит реже (медленее), чем обмен между молекулами в чистой воде) – положительная гидратация
если EI  0, i/  1 (обмен ближайших к иону молекул воды происходит чаще (быстрее), чем обмен между молекулами в чистой воде) – отрицательная гидратация

Так, для иона лития EI = 1.7 кдж/моль, а для иона цезия Ei= - 1.4 кдж/моль, т.е. маленький «жесткий» ион лития удерживает молекулы воды сильней, чем имеющий тот же заряд, но большой и «диффузный» ион цезия. Термодинамическая устойчивость образующихся сольватов определяется изменением энергии Гиббса при сольватации (solvG) = (solvH) - T(solvS). Чем эта величина более отрицательна, тем более устойчив сольват. В основном, это определяется отрицательными значениями энтальпии сольватации.
Понятие о растворах и теориях растворов. Истиные растворы получаются самопроизвольно при соприкосновении двух или более веществ, вследствие разрушения связей между частицами одного типа и образования связей другого типа и распределение вещества по всему объему вследствие диффузии. Растворы по свойствам разделяются на идеальные и реальные, растворы электролитов и неэлектролитов, разбавленные и концентрированные, ненасыщенные, насыщенные и пересыщенные. Свойства расторов зависят от природы и величины ММВ. Эти взаимодействия могут иметь физическую природы (силы Ван-дер-Ваальса) и сложную физико-химическую природу (водородная связь, ион-молекулярная, комплексы с переносом заряда и т.д.). Процесс образования раствора характеризуется одновременным проявлением между взаимодействующими частицами сил притяжения и отталкивания. При отсутствии сил отталкивания частицы бы сливались (слипались) и жидкости могли бы быть неограничено сжаты, при отсутствии сил притяжения нельзя было бы получить жидкости или твердые тела. В предыдущей лекции мы рассматривали физическую и химическую теории растворов.
Однако, создание единой теории растворов наталкивается на значительные трудности и в настоящее время она все еще не создана, хотя проводятся исследования самыми современными методами квантовой механики, статистической термодинамики и физики, кристаллохимии, рентгеноструктурного анализа, оптическими методами, методами ЯМР. Реактивное поле. В продолжении расмотрения сил межмолекулярного взаимодействия, рассмотрим концепцию «реактивного поля», которая важна для понимания структуры и строения конденсированных сред и реальных газов, в частности, жидкого состояния, а значит и всей физической химии жидких растворов.
Реактивное поле возникает в смесях полярных и неполярных молекул, например, для смесей углеводородов и нафтеновых кислот. Полярные молекулы воздействуют полем определенной симметрии (симметрия поля определяется симметрией вакантных молекулярных орбиталей) и напряженности Н на неполярные молекулы. Последние поляризуются из-за разделения зарядов, что приводит к появлению (наведению) диполя. Молекула с индуцированным диполем в свою очередь воздействует на полярную молекулу, изменяя ее электромагнитное поле, т.е. возбуждает реактивное (ответное) поле. Возникновение реактивного поля приводит к повышению энергии взаимодействия частиц, что выражается в создании прочных сольватных оболочек у полярных молекул в смеси полярных и неполярных молекул.
Энергию реактивного поля расчитывают по следующей формуле: где:
знак «-» - определяет притяжение молекул
S – статическая электрическая проницаемость
беск. – диэлектрическая проницаемость, обусловленная электронной и атомной поляризуемостью молекул
NA - число Авогадро
VM – объем, занимаемый 1 молем полярного вещества в изотропной жидкости v = дипольный момент
ER - энергия 1 моля полярного вещества в растворе
Концепция «реактивного поля» позволит нам лучше понять структуру чистых жидкостей и растворов. Квантово-химический подход к исследованию реактивного поля развит работах М. В. Базилевского и его сотрудников в Научно-исследовательском физико-химическом институте им. Л. Я. Карпова Таким образом, проблема жидкого состояния ждет своих молодых исследователей. Вам и карты в руки.

Жидкостью называют вещество, которое находится в агрегатном состоянии, являющимся промежуточным между твердым и газообразным. При этом ее состояние, как и в случае с твердыми телами, является конденсируемым, то есть предполагает связь между частицами (атомами, молекулами, ионами). Жидкость обладает свойствами, кардинально отличающими ее от веществ, которые находятся в других агрегатных состояниях. Главное из них - способность к многократному изменению формы под воздействием механических напряжений без потери объема. Сегодня мы с вами выясним, какими свойствами обладают жидкости, и что они вообще собой представляют.

Общая характеристика

Газ не сохраняет объем и форму, твердое тело сохраняет и то, и другое, а жидкость - только объем. Именно поэтому жидкое агрегатное состояние считается промежуточным. Поверхность жидкости представляет подобие упругой мембраны и определяет ее форму. Молекулы таких тел, с одной стороны, не имеют определенного положения, а с другой - не могут получить полную свободу перемещения. Они могут собираться в капли и течь под собственной поверхностью. Между молекулами жидкости существует притяжение, которого достаточно, чтобы удерживать их на близком расстоянии.

Вещество пребывает в жидком состоянии в определенном температурном интервале. Если температура опускается ниже него, происходит переход в твердую форму (кристаллизация), а если поднимается выше - в газообразную (испарение). Границы данного интервала для одной и той же жидкости могут колебаться в зависимости от давления. К примеру, в горах, где давление существенно ниже, чем на равнинах, вода закипает при более низкой температуре.

Обычно жидкость имеет только одну модификацию, поэтому является одновременно и агрегатным состоянием, и термодинамической фазой. Все жидкости делятся на чистые вещества и смеси. Некоторые из таких смесей имеют определяющее значение в жизни человека: кровь, морская вода и прочие.

Рассмотрим основные свойства жидкостей.

Текучесть

От других веществ жидкость отличается, в первую очередь, текучестью. Если к ней приложить внешнюю силу, в направлении ее приложения возникает поток частиц. Таким образом, при воздействии внешних неуравновешенных сил, жидкость не способна к сохранению формы и относительного расположения частиц. По этой же причине, она принимает форму сосуда, в который попадает. В отличие от твердых пластичных тел, жидкости не имеют предела текучести, то есть текут при малейшем выходе из равновесного состояния.

Сохранение объема

Одним из характерных физических свойств жидкостей является способность к сохранению объема при механическом воздействии. Их чрезвычайно трудно сжать из-за высокой плотности молекул. Согласно закону Паскаля, давление, которое производится на жидкость, заключенную в сосуд, без изменения передается в каждую точку ее объема. Наряду с минимальной сжимаемостью, эта особенность широко используется в гидравлике. Большинство жидкостей при нагревании увеличивается в объеме, а при охлаждении - уменьшается.

Вязкость

Среди главных свойств жидкостей, как и в случае с газами, стоит отметить вязкость. Вязкостью называют способность частиц сопротивляться движению друг относительно друга, то есть внутреннее трение. При движении соседних слоев жидкости относительно друг друга, происходит неизбежное столкновение молекул, и возникают силы, которые затормаживают упорядоченное перемещение. Кинетическая энергия упорядоченного движения преобразуется в тепловую энергию хаотического движения. Если жидкость, помещенную в сосуд, переместить, а затем оставить в покое, то она постепенно остановится, но ее температура возрастет.

Свободная поверхность и поверхностное натяжение

Если взглянуть на каплю воды, которая лежит на ровной поверхности, то можно увидеть, что она закруглена. Обусловлено это такими свойствами жидкостей, как образование свободной поверхности и поверхностное натяжение. Способность жидкостей к сохранению объема обуславливает образование свободной поверхности, которая является не иначе как поверхностью раздела фаз: жидкой и газообразной. При соприкосновении этих фаз одного и того же вещества возникают силы, направленные на уменьшение площади плоскости раздела. Их называют поверхностным натяжением. Граница раздела фаз представляет собой упругую мембрану, стремящуюся к стягиванию.

Поверхностное натяжение объясняется также притяжением молекул жидкости друг к другу. Каждая молекула стремится «окружить» себя другими молекулами и уйти с границы раздела. Из-за этого поверхность стремительно уменьшается. Этим объясняется тот факт, что мыльные пузыри и пузыри, образующиеся при кипении, стремятся принять сферическую форму. Если на жидкость будет действовать только сила поверхностного натяжения, она непременно примет такую форму.

Небольшие объекты, плотность которых превышает плотность жидкости, способны оставаться на ее поверхности за счет того, что сила, препятствующая увеличению площади поверхности, больше силы тяготения.

Испарение и конденсация

Испарением называют постепенный переход вещества из жидкого состояния в газообразное. В процессе теплового движения часть молекул покидают жидкость, проходя через ее поверхность, и преобразуются в пар. Параллельно с этим другая часть молекул, наоборот, переходит из пара в жидкость. Когда количество соединений, покинувшее жидкость, превышает количество соединений, пришедших в нее, имеет место процесс испарения.

Конденсацией называют процесс, обратный испарению. Во время конденсации жидкость получает из пара больше молекул, чем отдает.

Оба описанных процесса являются неравновесными и могут продолжаться до тех пор, пока не установится локальное равновесие. При этом жидкость может полностью испариться или же вступить со своим паром в равновесие.

Кипение

Кипением называют процесс внутренних преобразований жидкости. При повышении температуры до определенного показателя, давление пара превышает давление внутри вещества, и в нем начинают образовываться пузырьки. В условиях земного притяжения они всплывают вверх.

Смачивание

Смачиванием называют явление, которое возникает при контакте жидкости с твердым веществом в присутствии пара. Таким образом, оно происходит на границе раздела трех фаз. Это явление характеризует «прилипание» жидкого вещества к твердому, и его растекание по поверхности твердого вещества. Бывает три вида смачивания: ограниченное, полное и несмачивание.

Смешиваемость

Характеризует способность жидкостей растворяться друг в друге. Примером смешиваемых жидкостей могут выступить вода и спирт, а несмешиваемых - вода и масло.

Диффузия

Когда две смешиваемых жидкости пребывают в одном сосуде, благодаря тепловому движению молекулы начинают преодолевать границу раздела, и жидкости постепенно смешиваются. Данный процесс называется диффузией. Он может происходить и в веществах, которые находятся в иных агрегатных состояниях.

Перегрев и переохлаждение

Среди увлекательных свойств жидкостей стоит отметить перегрев и переохлаждение. Эти процессы нередко ложатся в основу химических фокусов. При равномерном нагреве, без сильных перепадов температур и механических воздействий, жидкость может нагреться выше точки кипения, не вскипев при этом. Этот процесс получил название перегрев. Если в перегретую жидкость бросить какой-либо предмет, она мгновенно вскипит.

Аналогичным образом происходит и переохлаждение жидкости, то есть ее охлаждение до температуры ниже точки замерзания, минуя само замерзание. При легком ударе переохлажденная жидкость мгновенно кристаллизуется и превращается в лед.

Волны на поверхности

Если нарушить равновесие участка поверхности жидкости, то тогда она, под действием возвращающих сил, будет двигаться обратно к равновесию. Это движение не ограничивается одним циклом, а превращается в колебания и распространяется на другие участки. Так получаются волны, которые можно наблюдать на поверхности любой жидкости.

Когда в качестве возвращающей силы выступает преимущественно сила тяжести, волны называют гравитационными. Их можно видеть на воде повсеместно. Если же возвращающая сила формируется преимущественно из силы поверхностного натяжения, то волны называют капиллярными. Теперь вы знаете, какое свойство жидкостей обуславливает знакомое всем волнение воды.

Волны плотности

Жидкость чрезвычайно тяжело сжимается, тем не менее, с изменением температуры, ее объем и плотность все-таки меняются. Происходит это не мгновенно: при сжатии одного участка, другие сжимаются с запаздыванием. Таким образом, внутри жидкости распространяются упругие волны, которые получили название волны плотности. Если по мере распространения волны плотность меняется слабо, то ее называю звуковой, а если достаточно сильно - ударной.

Мы с вами познакомились с общими свойствами жидкостей. Все основные характеристики зависят уже от типа и состава жидкостей.

Классификация

Рассмотрев основные физические свойства жидкостей, давайте узнаем, как они классифицируются. Структура и свойства жидких веществ зависят от индивидуальности частиц, входящих в их состав, а также характера и глубины взаимодействия между ними. Исходя из этого, выделяют:

  1. Атомарные жидкости. Состоят из атомов или сферических молекул, которые связаны между собой центральными ван-дер-ваальсовыми силами. Ярким примером являются жидкий аргон и жидкий метан.
  2. Жидкости, состоящие из двухатомных молекул с одинаковыми атомами, ионы которых связаны кулоновскими силами. В качестве примера можно назвать: жидкий водород, жидкий натрий и жидкую ртуть.
  3. Жидкости, которые состоят из полярных молекул, связанных путем диполь-дипольного взаимодействия, например, жидкий бромоводород.
  4. Ассоциированные жидкости. Имеют водородные связи (вода, глицерин).
  5. Жидкости, которые состоят из больших молекул. Для последних, важную роль играют внутренние степени свободы.

Вещества первых двух (реже трех) групп называют простыми. Они изучены лучше, чем все остальные. Среди непростых жидкостей, больше всего изучена вода. В данную классификацию не входят жидкие кристаллы и квантовые жидкости, так как они представляют собой особые случаи и рассматриваются отдельно.

С точки зрения гидродинамических свойств, жидкости подразделяют на ньютоновские и неньютоновские. Течение первых подчиняется закону Ньютона. Это значит, что их касательное напряжение линейно зависит от градиента скорости. Коэффициент пропорциональности между указанными величинами называется вязкостью. У неньютоновских жидкостей, вязкость колеблется в зависимости от градиента скорости.

Изучение

Изучением движения и механического равновесия жидкостей и газов, а также их взаимодействия, в том числе с твердыми телами, занимается такой раздел механики как гидроаэромеханика. Его также называют гидродинамикой.

Несжимаемые жидкости изучают в подразделе гидроаэромеханики, который называется просто гидромеханикой. Так как сжимаемость жидкостей очень мала, во многих случаях ею попросту пренебрегают. Сжимаемые жидкости изучает газовая динамика.

Гидромеханику дополнительно подразделяют на гидростатику и гидродинамику (в узком смысле). В первом случае изучается равновесие несжимаемых жидкостей, а во втором - их движение.

Магнитная гидродинамика занимается изучением магнитных и электропроводных жидкостей, а прикладными задачами занимается гидравлика.

Основным законом гидростатики является закон Паскаля. Движение идеальных несжимаемых жидкостей описывается уравнением Эйлера. Для их стационарного потока выполняется закон Бернулли. А формула Торричелли описывает вытекание жидких веществ из отверстий. Движение вязких жидкостей подчиняется уравнению Навье-Стокса, которое, кроме всего прочего, может учитывать и сжимаемость.

Упругие волны и колебания в жидкости (как, впрочем, и в других средах) изучается такая наука как акустика. Гидроакустика - подраздел, который посвящен изучению звука в водной среде для решения задач подводной связи, локации и прочего.

В заключение

Сегодня мы с вами познакомились с общими физическими свойствами жидкостей. Также мы узнали, что вообще представляют собой такие вещества, и как они классифицируются. Что касается химических свойств жидкости, то они напрямую зависят от ее состава. Поэтому рассматривать их стоит отдельно для каждого вещества. Какое свойство жидкости важно, а какое нет - ответить сложно. Здесь все зависит от задачи, в контексте которой эта жидкость рассматривается.

В гидромеханике принято объединять жидкости, газы и пары под одним названием – жидкости. Это связано с тем, что законы движения жидкостей и газов (паров) одинаковы, если их скорости значительно ниже скорости звука. Жидкостями называются все вещества, обладающие текучестью при приложении к ним самых незначительных сил сдвига.

При выводе основных закономерностей в гидромеханике также вводится понятие идеальной жидкости, которая, в отличие от реальной (вязкой) жидкости, абсолютно несжимаема под действием давления, не изменяет плотности при изменении температуры и не обладает вязкостью.

Масса жидкости, содержащаяся в единице объема V , представляет собой плотность тела

Величина, обратная плотности и представляющая собой объем, занимаемый единицей массы, называется удельным объемом :

.

Вес единицы объема жидкости называется удельным весом :

Удельный вес жидкости и её плотность связаны соотношением

Плотность, удельный объем и удельный вес относятся к важнейшим характеристикам жидкостей.

Реальные жидкости делятся на капельные и упругие. Капельные жидкости несжимаемы и обладают малым коэффициентом объемного расширения. Объем упругих жидкостей изменяется при изменении температуры и давления (газы, пары). В большинстве технических задач газы полагают идеальными. Состояние идеального газа описывается уравнением Клапейрона-Менделеева

,

где – универсальная газовая постоянная, равная 8314 Дж/(кмоль·К).

Это уравнение можно записать для расчета плотности газа

В ряде задач необходимо учитывать также состояние жидкостей. Для изоэнтропийных процессов в жидкости можно применять уравнение Тета

,

где – давление молекулярного взаимодействия; n коэффициент, зависящий от свойств жидкостей. Для воды » 3,2×108 Па, n » 7,15.

В зависимости от температуры и давления вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. В твердых телах молекулы взаимосвязаны между собой, расположены в определенном порядке и совершают только тепловое колебательное движение. Вероятность покинуть занимаемое молекулой (атомом) место мала. Поэтому твердые тела сохраняют заданную форму и объем.

В жидкостях тепловое движение молекул существенно выше, часть молекул получает достаточную энергию возбуждения и покидает свои места. Поэтому в жидкости молекулы перемещаются по всему объему, но их кинетическая энергия остается недостаточной для выхода за пределы жидкости. В этой связи жидкости сохраняют свой объем.

В газах тепловое движение еще больше, молекулы удалены настолько, что взаимодействие между ними становится недостаточным для удержания на определенном удалении, т.е. газ имеет возможность беспредельно расширяться.

Свободное перемешивание молекул в жидкостях и газах приводит к тому, что они изменяют свою форму при приложении сколь угодно малого силового действия. Это явление называют текучестью . Жидкости и газы принимают форму того сосуда, в котором они содержатся.

В результате хаотического движения молекулы в газе претерпевают столкновения. Процесс столкновения молекул характеризуется эффективным диаметром молекул, под которым понимается минимальное расстояние между центрами молекул при их сближении. Расстояние, которое молекула проходит между столкновениями, называется свободным пробегом молекулы.

В результате переноса количества движения при переходе молекул, движущихся в слоях с разными скоростями, возникает касательная сила, действующая между этими слоями. Свойство жидкости и газа сопротивляться сдвигающим усилиям называют вязкостью .

Расположим в жидкой среде пластину 1 на некотором расстоянии от стенки (рис. 2.1).


Пусть пластина движется относительно стенки 2 со скоростью w. Так как жидкость будет увлекаться пластиной, то в зазоре установится послойное течение жидкости со скоростями, изменяющимися от 0 до w . Выделим в жидкости слой толщиной dy . Очевидно, что скорости нижней и верхней поверхностей слоя будут отличаться по толщине на dw . В результате теплового движения молекулы непрерывно переходят из нижнего слоя в верхний и обратно. Так как их скорости различны, то их количества движения тоже различны. Но, переходя из слоя в слой, они должны принимать количество движения, характерное данному слою, т.е. будет иметь место непрерывное изменение количества движения, от чего появится касательная сила между слоями.

Обозначим через dT касательную силу, действующую на поверхность слоя площадью dF, тогда

Опыт показывает, что касательная сила Т , которую надо приложить для сдвига, тем больше, чем больше градиент скорости , характеризующий изменение скорости, приходящейся на единицу расстояния по нормали между слоями. Кроме того, сила Т пропорциональна площади соприкосновения F слоев, т.е.

В такой форме уравнение выражает закон внутреннего трения Ньютона , согласно которому напряжение внутреннего трения, возникающее между слоями жидкости при ее течении, прямо пропорционально градиенту скорости.

Знак минус в правой части уравнения указывает на то, что касательное напряжение тормозит слой, движущийся с относительно большой скоростью.

Коэффициент пропорциональности в приведенных уравнениях называется динамическим коэффициентом вязкости .

Размерность динамического коэффициента вязкости в СИ может быть выражена как

Вязкость жидкостей также можно характеризовать кинематическим коэффициентом вязкости

Вязкость капельных жидкостей снижается с возрастанием температуры, газов – растет. При умеренном давлении вязкость газов от давления не зависит, однако, начиная с некоторого давления, вязкость возрастает при его увеличении.

Причины разных зависимостей от температуры для газов и жидкостей в том, что вязкость газов имеет молекулярно-кинетическую природу, а капельных жидкостей зависит от сил сцепления между молекулами.

В ряде процессов химической технологии капельная жидкость при движении соприкасается с газом (или паром) или с другой капельной жидкостью, практически не смешивающейся с первой.

Силовое взаимодействие молекул, которые находятся на поверхности жидкости, и молекул, расположенных вдали от нее, неодинаково. Молекула, расположенная на поверхности, находится в симметричном силовом состоянии, верхняя часть силового поля ее вынуждена взаимодействовать с молекулами, находящимися под поверхностью. В результате этого потенциальная энергия связи в поверхностном слое увеличивается, а сам слой находится в более напряженном состоянии. Это явление называют поверхностным натяжением .

Потенциальная энергия связи в поверхностном слое

где s – коэффициент поверхностного натяжения; dF представляет собой поверхность жидкости, имеющей порядок dl2 .