Заводнение нефтяных месторождений. Разработка нефтяных месторождений с заводнением пластов. Системы заводнения, геологические условия их применения. Технология процесса заводнения. Контроль и регулирование процесса заводнения. Виды внутриконтурного заводн

С начала развития нефтяной промышленности до 40-х годов ХХ века залежи нефти разрабатывались на режимах истощения, при которых извлекали не более 25 % нефти от начальных запасов. Редко встречался естественный водонапорный режим. Отбор остаточных запасов производился с помощью так называемых вторичных методов добычи нефти – закачки воздуха и горячей газо -воздушной смеси, вакуум-процесса и др.

С конца 40-х годов начался качественно новый этап в развитии технологии нефтедобычи – интенсивное внедрение заводнения как на энергетически истощенных (вторичный метод добычи нефти), так и на вводимых в разработку (первичный метод) месторождениях.

Внедрение методов заводнения имело достаточно длительную историю, в течение которой происходила борьба двух противоположных мнений. Из практики разработки нефтяных месторождений Апшеронского полуострова хорошо известно, что появление воды в скважине – явление нежелательное и всегда сопровождающееся уменьшением дебитов нефти, осложнениями нормальной эксплуатации скважин вследствие образования песчаной пробки, отложением в трубах различных минеральных солей, необходимости подъема на поверхность больших объемов воды и т. д. Поэтому у ряда специалистов было отрицательное отношение к нагнетанию воды в нефтяные пласты.

В США также проявляли значительную осторожность при внедрении методов заводнения для большинства нефтяных месторождений, предпочитая использовать нагнетание воды лишь в качестве вторичного метода разработки.

Особое значение приобрели исследования по научному обоснованию методов поддержания пластового давления (ППД) в связи с проектированием разработки Туймазинского нефтяного месторождения в Башкирии (Волго-Уральская нефтегазоносная провинция). Успешное осуществление в крупных промышленных масштабах законтурного заводнения на этом месторождении способствовало внедрению метода водного воздействия и в других нефтегазоносных районах страны. Вследствие доступности воды, относительной простоты закачки и высокой эффективности вытеснения нефти водой заводнение стало высокопотенциальным и основным способом воздействия на пласты при разработке нефтяных месторождений.

В настоящее время заводнение это наиболее интенсивный и экономически эффективный способ воздействия, позволяющий значительно уменьшить количество добывающих скважин, увеличить их дебит, снизить затраты на 1 т добываемой нефти . С его помощью в СССР в начале 80-х годов было добыто свыше 90 % нефти .

В зависимости от расположения нагнетательных скважин по отношению к залежи нефти различают: законтурное, приконтурное и внутриконтурное за-воднение. На многих месторождениях применяют сочетание этих разновид-ностей.

ЗАКОНТУРНОЕ ЗАВОДНЕНИЕ


Недостаточное продвижение контурных вод в процессе разработки, не компенсирующее отбор нефти из залежи, сопровождающееся снижением пластового давления и уменьшением дебитов скважин, обусловило возникновение метода законтурного заводнения. Сущность этого явления заключается в быстром восполнении природных энергетических ресурсов, расходуемых на продвижение нефти к забоям эксплуатационных скважин. С этой целью поддержание пластового давления производится закачкой воды через нагнетательные скважины, расположенные за пределами нефтеносной части продуктивного пласта в зоне, занятой водой (за внешним контуром нефтеносности ) (рис. 1). При этом, линию нагнетания намечают на некотором расстоянии за внешним контуром нефтеносности. Это расстояние зависит от таких факторов, как:

· степень разведанности залежи – степень достоверности установления местоположения внешнего контура нефтеносности , что в свою очередь зависит не только от числа пробуренных скважин, но и от угла падения продуктивного пласта и от его постоянства;

· предполагаемое расстояние между нагнетательными скважинами;

· расстояние между внешними и внутренними контурами нефтеносности и между внутренним контуром нефтеносности и первым рядом добывающих скважин.

Чем лучше степень разведанности, чем достовернее определено местопо-ложение внешнего контура нефтеносности , чем круче и выдержаннее пласт,тем ближе к контуру можно наметить линию нагнетания. Смысл этого требования заключается в гарантии от заложения нагнетательных скважин в нефтеносной части пласта. Чем больше будет расстояние между нагнетательными скважинами, тем больше должно быть и расстояние от контура нефтеносности до линии нагнетания. Выполнение этого требования обеспечивает сохранение формы контуров нефтеносности без резких языков вторжения воды в нефтяную часть пласта против нагнетательных скважин и достижение равномерности перемещения водонефтяного контакта (ВНК).

Значение вышеперечисленных факторов уменьшается по мере увеличения неоднородности и изменчивости пласта от участка к участку по толщине и проницаемости. Так как изменение именно этих параметров сильно сказывается на фильтрационном потоке и, следовательно, на характере перемещения кон-туров нефтеносности . Поэтому обычно нагнетательные скважины размещают возможно ближе к внешнему контуру нефтеносности – на расстоянии от 0 до 200 –300 м в зависимости от угла наклона пласта и расположения эксплуатационных скважин.

Для однородных высокопроницаемых пластов, содержащих легкую нефть малой вязкости и с хорошей гидродинамической связью залежи с водоносной зоной, метод законтурного заводнения является достаточно эффективным, обеспечивающим нефтеотдачу, близкую к естественному водонапорному режиму. Но на практике редко встречается природная система (залежь), идеально сочетающая в себе эти факторы.

Если законтурное заводнение в стадии его широкого внедрения считалось наиболее эффективным методом поддержания пластового давления, то тщательный анализ сущности метода, в первую очередь, с геологических позиций дает основание отметить значительное число негативных сторон этого метода, которые ставят под сомнение целесообразность его применения для подавляющего большинства нефтяных залежей.

Отрицательные стороны применения законтурного заводнения

1. Для ряда залежей нефти , приуроченных к терригенным и карбонатным коллекторам, вторичные процессы, происходившие после формирования залежей в зоне ВНК привели к резкому ухудшению проницаемости вплоть до закупорки пор и по существу – к изоляции нефтяной залежи от законтурной области.

2. Отдельные исследователи, учитывая только гидродинамические соображения по выравниванию фронта продвижения закачиваемой воды, рекомендовали закладывать нагнетательные скважины на значительном отдалении от внешнего контура залежи (2 км и более). Такой подход не учитывал возможность выклинивания пластов или резкого ухудшения проницаемости в

зоне, расположенной до границы нефтяной залежи. В этом случае вся нагнетаемая вода, которая должна продвигаться по этому пласту устремляется в законтурную область, не совершая абсолютно никакой полезной работы.

3. Заложение нагнетательных скважин на расстоянии от внешнего контура, учитывая, что каждый из ниже залегающих продуктивных пластов будет иметь меньшую площадь по сравнению с верхним и потому контуры по отдельным пластам перемещаются в направлении свода поднятия, все больше удаляясь от нагнетательных скважин. В этой связи будет ухудшаться эффективность законтурного заводнения для нижних пластов одного и того же горизонта.

4. Исследованиями А.П. Крылова, П.М. Белаша и др. по многим крупным залежам Волго-Уральской нефтегазоносной провинции установлено, что при расчете количества воды для поддержания пластового давления в залежах, в которых установлена хорошая связь с законтурной областью, необходимо принять расчетный коэффициент, равный 1,7 , т.е. из обычного количества нагнетаемой воды 70 % направляется в законтурную область. Почти такие же огромные потери, достигающие 70 % и более были определены Н.К. Пра-ведниковым при законтурном заводнении Трехозерного месторождения в Западной Сибири.

5. При разработке крупных и очень крупных залежей нефти длиной 25 – 35 км и шириной 12 –15 км, с площадью нефтеносности 200 – 400 км2 и более принимали расстояние между скважинами в рядах 400 – 500 м, а расстояние между рядами батарей скважин 500 – 600 м. После продвижения фронта нагнетаемой воды к первому внешнему ряду эксплуатационных скважин проводилось наращивание четвертой и последующих внутренних кольцевых батарей скважин с отключением внешних обводнившихся (нередко лишь частично) рядов скважин. Перенос фронта нагнетания и вынужденное поэтапное отключение батарей скважин обуславливали неполный отбор запасов и большую потерю нефти .

6. Для месторождений Западной Сибири характерны значительные площади нефтеносности, сравнительно слабая активность законтурных вод, высокие темпы отбора нефти . Поэтому законтурное заводнение характеризуется значительной потерей закачиваемых вод. Так для Мегионского и Усть-Балыкского месторождений эта потеря достигает 40 % и более. Для пласта БС 2-3 Усть-Балыкского месторождения, где нагнетательные скважины удалены от зоны отбора жидкости на 1,5 - 2–км, потери закачиваемых вод оказались значительными.

7. К недостаткам законтурного заводнения следует отнести также сложность обустройства объектов ППД, строительство системы водоводов большой протяженности по периметру месторождения.

Положительный эффект системы законтурного заводнения

Законтурное заводнение дает значительный эффект и не имеет указанных выше недостатков при разработке залежей малых и средних размеров, когда имеется не более четырех батарей скважин.

Благоприятными геологическими условиями для этого вида заводнения являются:

Однородные коллекторские свойства пласта или их улучшение в периферийной части залежи;

Малая относительная вязкость нефти;

Высокая проницаемость коллектора (0,4 – 0,5 мкм 2 и более);

Сравнительно однородное строение пласта;

Небольшая ширина залежи (4 – 5 км).

При этих условиях эксплуатационные скважины располагают вдоль внутреннего контура нефтеносности кольцевыми рядами. При нагнетании воды создается искусственный контур питания, приближенный к зоне разработки пласта.

При законтурном заводнении не нарушается естественное течение процесса, а лишь интенсифицируется, приближая область питания непосредственно к залежи.

Промышленное применение заводнения нефтяных пластов в СССР было начато в 1948 году при разработке девонских горизонтов Туймазинского нефтяного месторождения. К этому времени уже были известны опыты закачки воды в нефтяные пласты с целью пополнения пластовой энергии, про-водившиеся в разных странах.

При разработке нефтяных месторождений в СССР с применением заводнения вначале использовали законтурное заводнение. Этот вид воз-действия на продуктивные пласты применяли на месторождениях, коллекторы которых были сложены в основном песчаниками и алевролитами с проницаемостью 0,3 – 1,0 мкм2 . Вязкость нефти в пластовых условиях заводняемых месторождений составляла 1 – 5 10 –3 Па с.

Законтурное заводнение осуществлялось часто не с самого начала разработки месторождений, а спустя некоторое время, в течение которого происходило падение пластового давления. Тем не менее закачка воды в законтурную область пласта позволяла в течение одного-двух лет настолько восполнить запас пластовой энергии, что оно стабилизировалось.

Использование заводнения нефтяных пластов привела вначале к возникновению технологической трудности, связанной с низкой приемистостью нагнетательных скважин. Пласты, которые, согласно формуле Дюпюи, должны были при используемых перепадах давления поглощать запроектированные расходы воды, практически не принимали воду. Широкое применение методов воздействия на призабойную зону скважин, таких, как гидравлический разрыв пласта и кислотные обработки, и главным образом использование повышенных давлений нагнетания привели к существенному увеличению приемистости нагнетательных скважин, к решению проблемы их освоения.

Опыт разработки нефтяных месторождений с применением законтурного заводнения привел к следующим основным выводам:

1. Законтурное заводнение позволяет не только поддерживать пластовое

Давление на первоначальном уровне, но и превышать его.

2. Использование законтурного заводнения дает возможность обеспечивать доведение максимального темпа разработки месторождений до 5-7 % от начальных извлекаемых запасов, применять системы разработки с параметром плотности сетки скважин 20-60 10 4 м2 / скв при довольно высокой конечной нефтеотдаче , достигающей 0,50 – 0,55 в сравнительно однородных пластах и при вязкости нефти в пластовых условиях порядка 1-5 10 –3 Па с.

3. При разработке крупных по площади месторождений с числом рядов добывающих скважин больше пяти законтурное заводнение оказывает слабое воздействие на центральные части, в результате чего добыча нефти из этих частей оказывается низкой. Это ведет к тому, что темп разработки крупных месторождений в целом не может быть достаточно высоким при законтурном заводнении.

4. Законтурное заводнение не позволяет воздействовать на отдельные локальные участки пласта с целью ускорения извлечения из них нефти , выравнивания пластового давления в различных пластах и пропластках.

5. При законтурном заводнении довольно значительная часть воды, закачиваемой в пласт, уходит в водоносную область, находящуюся за контуром нефтеносности , не вытесняя нефть из пласта.

ПРИКОНТУРНОЕ ЗАВОДНЕНИЕ

Приконтурное заводнение применяется для пластов с сильно пониженной проницаемостью в законтурной части. При нем нагнетательные скважины бурятся в водонефтяной зоне пласта между внутренним и внешним контурами нефтеносности (рис. 2).



Рис. 2. Схема размещения скважин при приконтурном заводнении

Уменьшение проницаемости в законтурной части пласта резко снижает поглотительную способность законтурных нагнетательных скважин и обуславливает слабый эффект воздействия на пласт. Это явление вызывается резким повышением карбонатности пород в этой части залежи, что может быть связано со вторичными процессами химического взаимодействия нефти и краевых вод в зоне ВНК. Последнее зависит от химического состава пластовых вод и нефти и от сложных биохимических процессов, протекающих в недрах на контакте вода -–нефть . Располагая нагнетательные скважины в краевой приконтурной зоне залежи, стало возможным исключить зону с резко ухудшенной проницаемостью, являющейся барьером, отделяющим нефтяную залежь от законтурной области, а также оказать эффективное воздействие на залежь со стороны краевых зон и резко сократить отток воды в законтурную область.

Первоначально метод приконтурного заводнения был предложен для залежей геосинклинальных областей с резко ухудшенной проницаемостью в зоне ВНК и изолированной от законтурной области. Впоследствии оказалось, что приконтурное заводнение весьма эффективно и для платформенных залежей.

Так, на Туймазинском месторождении, при проведении в течение длительного времени законтурного заводнения возникли значительные трудности в разработке залежи горизонта Д 1 . Рядом специалистов было предложено перейти к приконтурному заводнению. Ранее предполагалось, что законтурное заводнение обеспечит вытеснение нефти из краевых зон залежи в направлении к зоне внутреннего контура нефтеносности , но это предположение не оправдалось. Под действием нагнетаемой воды при законтурном заводнении происходит непоршневое вытеснение нефти из краевых зон по всей нефтенасыщенной мощ-ности пласта, и нагнетаемая вода устремляется по нижней водоносной части горизонта. Данное обстоятельство обуславливает необходимость самостоятель-ной разработки водонефтяных зон крупных залежей.

Преимущества приконтурного заводнения очевидны. Краевые части залежей, вплоть до внешнего контура нефтеносности отличаются малыми мощностями нефтеносных пород, не имеющих для разработки практического значения. На крупных платформенных залежах добывающие скважины не закладываются в зонах малых мощностей (1 – 3 м).

Метод приконтурного заводнения, по сравнению с другими, более интенсивными методами не может обеспечить в течение краткого срока достижение максимального уровня добычи , но позволяет за более длительный промежуток времени сохранить достаточно высокий стабильный уровень добычи .

ВНУТРИКОНТУРНОЕ ЗАВОДНЕНИЕ

Полученные результаты законтурного заводнения нефтяных пластов вызвали дальнейшее усовершенствование разработки нефтяных месторождений и привели к целесообразности использования внутриконтурного заводнения, особенно крупных месторождений, с разрезанием пластов рядами нагнетательных скважин на отдельные площади или блоки.

При внутриконтурном заводнении поддержание или восстановление баланса пластовой энергии осуществляется закачкой воды непосредственно в нефтенасыщенную часть пласта (рис. 3).

В России применяют следующие виды внутриконтурного заводнения:

· разрезание залежи нефти рядами нагнетательных скважин на отдельные площадки;

· барьерное заводнение;

· разрезание на отдельные блоки самостоятельной разработки;

· сводовое заводнение;

· очаговое заводнение;

· площадное заводнение.


Рис. 3. Схема размещения скважин при внутриконтурном заводнении

Система заводнения с разрезанием залежи на отдельные площади применяется на крупных месторождениях платформенного типа с широкими водонефтяными зонами. Эти зоны отрезают от основной части залежи и разрабатывают по самостоятельной системе. На средних и небольших по размеру залежах применяют поперечное разрезание их рядами нагнетательных скважин на блоки (блоковое заводнение). Ширина площадей и блоков выби-рается с учетом соотношения вязкостей и прерывистости пластов (литоло-гического замещения) в пределах до 3 – 4 км, внутри размещают нечетное число рядов добывающих скважин (не более 5 – 7).

Разрезание на отдельные площади и блоки нашло применение на Ромашкинском (23 пласта горизонта Д1 , Татария), Арланском (Башкирия), Мухановском (Куйбышевская обл.), Осинском (Пермская обл.), Покровском (Оренбургская обл.), Узеньском (Казахстан), Правдинском, Мамонтовском, Западно-Сургутском, Самотлорском (Западная Сибирь) и других место-рождениях.

На месторождениях Советском (пласты АВ 1) , Самотлорском, Мамонтовском и др. С начала 60-х гг. стали широко использовать системы блокового заводнения,

Так называемые “активные” (интенсивные) системы с размещением между двумя нагнетательными рядами не более 3 – 5 рядов добывающих скважин. При небольшой вязкости нефти (до 3 – 5 мПа с) для объектов с относительно однородным строением пластов системы заводнения могут быть менее активными, блоки шириной до 3,5 – 4 км. Для ухудшенных условий активность систем должна повышаться, а ширина блоков должна уменьшаться до 2 – 3 км и менее. При однородных пластах с продуктивностью выше 500 т / (сут. МПа) оправдали себя пятирядные системы, при продуктивности 10 – 50 т / (сут. МПа) – трехрядные.

В результате дальнейших исследований, исходя из опыта разработки было установлено, что наиболее целесообразно применять разрезание разрабатываемых пластов рядами нагнетательных скважин в блоке (полосе) находилось не более пяти рядов добывающих скважин. Так возникла современная разновидность рядных систем – блоковые системы разработки нефтяных месторождений: однорядная, трехрядная и пятирядная.

Использование систем разработки с внутриконтурным разрезанием позволило в 2 – 2,5 раза увеличить темпы разработки по сравнению с законтурным заводнением, существенно улучшить технико-экономические показатели разработки. Блоковые рядные системы нашли большое применение при разработке нефтяных месторождений во многих нефтедобывающих районах, особенно в Западной Сибири.

В дальнейшем, с целью расположения резервных скважин, интенсификации и регулирования разработки месторождений, стали применять схемы очагового и избирательного заводнения, при использовании которых нагнетательные и добывающие скважины располагают не в соответствии с принятой упорядоченной системой разработки, а на отдельных участках пластов.

В настоящее время это наиболее интенсивный и экономичный способ воздействия на продуктивные пласты. По характеру взаимного расположения нефтедобывающих и водонагнетательных скважин различают несколько разновидностей внутриконтурного заводнения.

Сводовое заводнение. При нем ряд нагнетательных скважин размещают на своде структуры или вблизи него. Если размеры залежи превышают оптимальные, то это заводнение сочетают с законтурным. Сводовое заводнение подразделяется на: осевое, кольцевое и центральное.

Осевое заводнение предусматривает поддержание пластового давления путем расположения нагнетательных скважин вдоль длинной оси структуры. Полагают, что такой метод заводнения может быть избран в связи со значительным ухудшением проницаемости в периферийной части залежи или с резко ухудшенной проницаемостью в законтурной части.

Осевое заводнение было осуществлено в США на месторождениях Уиссон

(1948 г.) и Келли-Снайдер (1954 г.) , в России - при разработке Новодмит-риевского, Якушкинского, Усть-Балыкского (пласты группы А).

Кольцевое заводнение. Кольцевой ряд нагнетательных скважин с радиусом, приблизительно равным 0,4 радиуса залежи, разрезает залежь на центральную и кольцевую площади. (Ромашкинское месторождение).

Центральное заводнение как разновидность кольцевого (вдоль окружности радиусом 200 – 300 м размещают 4 – 6 нагнетательных скважин, а внутри ее имеется одна или несколько добывающих скважин).

Очаговое заводнение в настоящее время применяется в качестве до-полнительного мероприятия к основной системе заводнения. Оно осущест-вляется на участках залежи, из которых в связи с неоднородным строением пласта, линзовидным характером залегания песчаных тел и другими причинами, запасы нефти не вырабатываются. Положение нагнетательных и добывающих скважин определяется таким образом, чтобы способствовать более полному охвату воздействием нефтяной залежи. Количество очагов заводнения определяется размерами нефтеносной площади. Также используется в сочетании с законтурным и особенно внутриконтурным заводнением для выработки запасов нефти из участков, не охваченных основными системами.

Оно более эффективно на поздней стадии разработки. Внедрено на месторождениях Татарии, Башкирии, Пермской, Оренбургской областей и т.д.

Избирательное заводнение применяется в случае залежей с резко выра-женной неоднородностью пластов. Особенность этого вида заводнения заключается в том, что в начале скважины бурят по равномерной квадратной сетке без разделения на эксплуатационные и нагнетательные, а после исследования и некоторого периода разработки из их числа выбирают наиболее эффективные нагнетательные скважины. Благодаря этому, при меньшем их числе реализуется максимально интенсивная система заводнения и достигается более полный охват охват заводнением.

Площадное заводнение характеризуется рассредоточенной закачкой воды в залежь по всей площади ее нефтеносности . Площадные системы заводнения по числу скважино-точек каждого элемента залежи с расположенной в его центре одной добывающей скважиной могут быть четырех-, пяти-, семи- и девя-титочечные, также линейные (рис. 4).


Рис. 4 Площадная четырех-(а), пяти-(б), семи-(В), девятиточечная (г) и линейная (д,е) системы заводнения (с выделенными элементами)

Линейная система – это однорядная система блокового заводнения, причем скважины размещаются в шахматном порядке. Отношение нагнетательных и

добывающих скважин составляет 1: 1 . Элементом этой системы может служить прямоугольник со сторонами 2L и 2s н = 2 s д = 2s. Если 2L = 2s, то линейная система переходит в пятиточечную с таким же соотношением скважин (1: 1) . Пятиточечная система симметрична и за элемент можно выбрать также обратное размещение скважин с нагнетательной скважиной в центре (обращенная пятиточечная система). В девятиточечной системе на одну добывающую скважину приходится три нагнетательных (соотношение скважин 3: 1) , так как из восьми нагнетательных скважин по четыре скважины приходится соответственно на два и четыре соседних элемента. В обращенной девятиточечной системе (с нагнетательной скважиной в центре квадрата) соотношение нагнетательных и добывающих скважин составляет 1: 3 . При треугольной сетке размещения скважин имеем четырехточечную (обращенную семиточечную) и семиточечную (или обращенную четырехточечную) системы с соотношением нагнетательных и добывающих скважин соответственно 1:2 и 2: 1 .

Площадное заводнение эффективно при разработке малопроницаемых пластов. Его эффективность увеличивается с повышением однородности, толщины пласта, а также с уменьшением вязкости нефти и глубины залегания залежи.

Заводнение нефтяных пластов с его разновидностями в настоящее время - главный метод воздействия на нефтяные пласты с целью извлечения из них нефти .

Обширные фактические данные по разработке нефтяных месторождений с применением заводнения во многих случаях подтверждают с той или иной степенью точности теоретические результаты, получаемые на основе моделей поршневого и непоршневого вытеснения нефти водой из однородного, слоисто-неоднородного, а также трещиноватого и трещиновато-пористого пластов, если модель соответствует реальному пласту. Фактическое изменение пластового давления, добыча нефти и жидкости, зависимость текущей обводненности от нефтеотдачи согласуются с расчетными. В настоящий момент существует проблема правильного выбора модели, наиболее точно отражающей главные особенности разработки пласта. Модель разработки конкретного пласта может быть построена лишь на основе тщательного изучения и учета свойств пласта и сопоставления результатов расчета процесса разработки с фактическими данными. В связи с ростом возможностей вычислительной техники большое развитие получили детерминированные модели пластов и процессов разработки. Их использование приводит к необходимости решения двумерных и трехмерных задач многофазной многокомпонентной фильтрации.

Богатый и многообразный опыт применения заводнения в России позволяет не только выявить его технологические возможности, но и сформулировать проблемы, связанные с этим методом воздействия на пласты.

Первая проблема заводнения возникла на стадии его лабораторных экспериментальных исследований. Затем теоретические исследования и анализ разработки нефтяных месторождений с различной вязкостью нефти показали, что с увеличением отношения вязкостей нефти и воды в пластовых условиях µ0 =µн /µв текущая нефтеотдача при одном и том же отношении объема закачанной в пласт воды Q к объему пор пласта Vп снижается. Если, например, за условную конечную нефтеотдачу принять нефтеотдачу при прокачке через пласт трех

объемов пор пласта, т.е. объема воды, равного 3 Vп, то в среднем при µ0 = 1-5 можно получить конечный коэффициент вытеснения порядка 0,6 – 0,7 для пород – коллекторов нефти с проницаемостью 0,3 – 1,0 мкм2 .

Если заводнение применяют на нефтяном месторождении с вязкостью нефти в пластовых условиях порядка 20-50 10 –3 Па с, то конечный коэффициент вытеснения снижается до 0,35 – 0,4 в результате усиления неустойчивости процесса вытеснения нефти водой.

Лабораторные экспериментальные исследования вытеснения нефти водой, проводимые на моделях пластов, показывают, что при µ 0 = 1 – 5 линия контакта нефть – вода изгибается сравнительно мало (рис. 5), но при µ 0 = 20 – 30 она сильно деформируется (рис. 6). При этом вода, вытесняющая нефть , движется языками, оставляя позади контакта нефть – вода участки обойденной водой нефти .

Если m 0 >100, заводнение нефтяных месторождений, осуществляемое путем закачки обычной воды, оказывается неэффективным, поскольку конечная нефтеотдача получается низкой (порядка 0,1).


Рис. 5 Схема движения водонефтяного контакта в пласте

при m = 1 – 5 ·10 Па с

1 – область, занятая водой и остаточной нефтью ; 2 – водонефтяной контакт;

3 - область, занятая нефтью

Аналогичная картина возникает при использовании заводнения для вытеснения высокопарафинистой нефти из пластов. Если допустить сильное разгазирование нефти во время разработки месторождения на естественном режиме или снижение пластовой температуры ниже температуры кристаллизации парафина вследствие закачки в пласт воды с более низкой температурой, чем пластовая, то парафин, первоначально находившийся в нефти в растворенном состоянии, выделится из нее, вязкость нефти повысится и она приобретет неньютоновские свойства, что в конечном итоге приведет к снижению нефтеотдачи .

нефтяных месторождений с применением заводнения состоит в ликвидации отрицательного влияния высокого отношения вязкостей нефти и воды, а также неньютоновских свойств нефти на текущую и конечную нефтеотдачу .


Рис. 6 Схема движения водонефтяного контакта в пласте

при m = 20 – 30·10 Па с

1-область, занятая водой и остаточной нефтью ; 2 – водонефтяной контакт;

3 – область, занятая нефтью ; 4 – скопление нефти , оставшейся позади водонефтяного контакта

Исходя из вышеизложенного, первая проблема разработки нефтяных месторождений с применением заводнения состоит в ликвидации отрицательного влияния высокого отношения вязкостей нефти и воды, а также неньютоновских свойств нефти на текущую и конечную нефтеотдачу .

В настоящий момент существуют следующие направления решения этой проблемы.

Вторая проблема заводнения связана с принципиальной невозможностью достижения полного вытеснения нефти водой даже при благоприятных условиях значительной проницаемости коллекторов и малых значениях параметра m 0.

Главной причиной невозможности полного вытеснения нефти водой из завод-ненных областей пластов заключается в несмешиваемости нефти и воды.

Третья проблема – возникла в результате анализа и обобщения опыта разработки на многих нефтяных месторождениях - обеспечение более полного охвата пластов процессом заводнения. По многим причинам отдельные пропластки, входящие в объекты разработки, не поглощают воду, следовательно из них не вытесняется нефть ; обводнение отдельных скважин происходит весьма неравномерно, что ведет к оставлению в пласте не охваченных заводнением нефтенасыщенных зон (рис. 7).

Рис. 8 Схема разреза пласта, состоящего из трех пропластков,

разрабатываемого при трехрядной схеме расположения скважин

1 – нагнетательная скважина; 2 – пропласток 1; 3 – добывающая скважина; 4 – пропласток 2, вклинивающийся между первым и вторым рядом добывающих скважин; 5 – добывающая скважина второго ряда; 6 – пропласток 3

Заводнение нефтяных пластов начало применяться не с самого начала развития нефтяного производства. Еще с 40-х годов прошлого века разработка нефтяных месторождений проводилась всего до 25 % истощения. Лишь изредка встречался природный напор воды, который позволял получить немного больше углеводородного сырья. Остаточные запасы отбирались при помощи вторичных методов – закачки в скважину воздуха и нагретой газо-воздушной смеси.

Заводнение нефтяных месторождений, характеристика процесса

Закачка воды в нефтяное месторождение – самый популярный процесс разработки углеводородных пластов. С помощью технологии можно достичь высокого коэффициента отбора сырья. Основная цель, которую несет в себе заводнение, – вытеснение нефтяных пластов. Популярность технологии обоснована следующим:

  • наличие и доступность воды;
  • простота сооружения инженерных коммуникаций и легкость процесса нагнетания жидкости;
  • способность воды проникать в насыщенные сырьем пласты;
  • достаточной нефтеотдачей при отделении полезного ископаемого от воды.

Методика обеспечивает высокий отбор сырья сразу по двум критериям. Первый – поддержка постоянно высокого пластового давления, второй – физическое проникновение воды в толщу нефтяных пластов. Существует несколько разновидностей технологии. Каждая из них подразумевает использование различных жидкостей, суспензий и прочих химических веществ, которые не вступают в реакцию с ископаемым. Но все подобные способы считаются третичными технологиями разработки.

Стоит понимать, что заводнение нефтяных месторождений – высокопотенциальный способ извлечения нефти, который в ближайшее время будет оставаться передовой технологией. А поиск способов улучшения данной методики – основная задача отрасли.

Законтурная технология

Заводнение такого типа возник в результате недостаточного продвижения контурных вод. Смысл данной технологии в том, что объемы природного сырья быстро восполняются за счет нагнетания воды. Сами скважины подачи жидкости располагаются за территорией (контуром) нефтегазоносного пласта. При этом линия нагнетания всегда находится за внешним кольцом нефтеносности. Расстояние берется в зависимости от следующего:

  • примерное расстояние между местами для подачи воды;
  • показатель разведывания территории добычи нефти;
  • отступ внешнего контура нефтеносности от внутреннего.

Если ранее такой способ считался максимально эффективным, то длительный анализ, геологические исследования показали, что есть основания предполагать о существовании массы негативных сторон.

Первое – длительное использование технологи приводит к затруднительной проницаемости нефтяных пластов. При этом может доходить даже до изоляции залежей сырья. Второе – рекомендуется сооружать нагнетательные станции на расстоянии от 2 км от месторождения. Это затрудняет подачу воды. Кроме того, специалистами отмечается и слабая активность воды за контуром нефтедобычи.

Приконтурное заводнение


Такой вариант подходит для пластов с весьма заниженной проницаемостью за контуром нефтеносности. Этот фактор влияет на уменьшение поглотительной характеристики нагнетательных станций. Потому оказывается слабое воздействие на залежи. Кроме того, возникает резкий скачок карбонатности. С чем это связано? Все просто – присутствие химической реакции нефти после контакта с водой в данной зоне. Конечно, это во многом зависит от состава воды в этом пласте.

Используя такую технологию можно исключить возникновение территории с плохой проницаемостью. Помимо этого производится положительный эффект на нефтяные пласты в краевой области нефтеносности, что позволяет сократить количество воды, которое идет за контур.

Изначально метод использовался весьма узко – исключительно в местах со слабой проницаемостью. Позже выяснилось, что эффективность приконтурного заводнения для добычи нефти в платформенных пластах тоже достаточно высока. Недостаток методики заключается в том, что нагнетательные скважины нецелесообразно сооружать в местах с пластами малой мощности.

Важно! Такой способ не может обеспечить быструю подачу воды в область нефтеносности. Это обусловлено малой интенсивностью. При этом отмечается высокая эффективность и стабильная производительность на длинной дистанции.

Внутриконтурное заводнение

Описанный выше способ вызвал изначально массу споров, но в итоге привел к интенсивной разработке более совершенных технологий. Одной из них является внутриконтурное заводнение нефтяных месторождений. Данная технология используется внутри области расположения залежей природного ресурса. Высокая эффективность методики наблюдается в особо крупных месторождениях. Суть способа заключается в разрезании пластов на сектора, блоки и отдельные площади рядами скважин для подачи воды.

На территории РФ используются следующие подвиды данной технологии:

  • барьерное заводнение;
  • очаговая технология;
  • подача воды по площади;
  • разрезание нефтеносного контура на отдельные блоки, где добыча проводится отдельно от остальной системы;
  • сводовое заводнение;
  • разрезание залежей природного ресурса на небольшие площадки.

Каждая технология примечательна своими особенностями. О каждой из них будет вестись разговор немного ниже. Стоит отметить, что данный способ разработки направлен на высокоэффективное поддержание и восстановление баланса в межпластовом пространстве. Закачка жидкости проводится прямо в часть месторождения, насыщенную нефтью.

Виды процесса

Заводнение считается наиболее эффективным и экономично оправданным способом разработки нефтяных месторождений. Исходя из расположения нефтедобывающих предприятий и станций нагнетания вод, можно разделить внутриконтурную технологию на несколько видов:

  1. Сводовое. Такой способ предусматривает сооружение скважин в непосредственной близости от свода системы или же прямо на нем. Такую технологию можно комбинировать с законтурной. В свою очередь данный метод делится на:
    • осевое заводнение – нагнетательные системы размещаются вдоль оси технологической структуры;
    • кольцевое – ряд нагнетателей располагается так, чтобы нефтяное месторождение делилось на центральную и кольцевую плоскости;
    • центральное – предполагает размещение по кольцу 4-6 скважин для подачи воды и одну центральную.
  2. Очаговое заводнение нефтяных месторождений. Используется в роли вспомогательного мероприятия. Проводится такая операция на тех участках, где имеется негомогенное строение пласта или наблюдаются залежи песчаников в форме линзы.
  3. Избирательное. Его применяют, когда залежи имеют резко выраженную неоднородность нефтяных пластов. Изначально бурят места вод скважины по сетке, а далее выбирают наиболее оптимальные варианты их размещения.
  4. Площадное. Такой тип заводнения отличается рассредоточением мест нагнетания воды в залежи сырья.

Все это говорит о популярности данной технологии в нефтяной промышленности. Эффективность методики достаточно высока, но все же проводится ряд мероприятий по улучшению показателей добычи природного ресурса.

Заводнение

нефтяных месторождений, закачка воды в нефтяные пласты в целях поддержания и восстановления пластового давления (см. Забойное давление) и баланса пластовой энергии. При З. обеспечиваются высокие темпы добычи нефти и сравнительно высокая степень извлечения нефти из недр, т. к. разработка проходит при наиболее эффективном водонапорном режиме работы пласта (нефть, содержащаяся в порах или трещинах горных пород, замещается водой). В большинстве нефтяных районов имеются источники воды, пригодной после несложной обработки для закачки в пласт. Эффективность З. (в т. ч. экономическая) способствовала широкому внедрению этого способа при добыче нефти в СССР (в конце 1960-х гг. около 1 / 4 добытой нефти). З. позволяет значительно уменьшать число нефтяных скважин и резко повышать их дебиты (суточную производительность), что существенно снижает затраты на каждую тонну добываемой нефти. Система З. обычно состоит из водозаборных сооружений, ёмкостей, очистных установок, насосных станций, водоразводящих сетей и нагнетательных скважин. Закачка воды в нефтяные пласты осуществляется через систему нагнетательных буровых скважин, как правило, пробурённых для этой цели. В зависимости от местоположения нагнетательных скважин по отношению к залежи нефти и от взаимного расположения нагнетательных и эксплуатационных (добычных) скважин различают разновидности З.: законтурное, при котором все нагнетательные скважины располагаются в чисто водяных зонах пласта за пределами нефтяной залежи; внутриконтурное, при котором нагнетательные скважины располагаются на площади нефтяной залежи, и вода закачивается в нефтенасыщенную часть пласта; площадное, при котором расположенные по специальной сетке нефтяные и нагнетательные скважины чередуются друг с другом определённым образом.

При законтурном З. разработка по своему характеру близка к естественному водонапорному режиму работы пласта при активных краевых (законтурных) водах. Законтурное З. лишь интенсифицирует этот процесс, приближая область питания пласта вплотную к залежи. Для многих залежей нефти такая интенсификация имеет решающее значение, т. к. только в этом случае залежь может быть разработана в нужные сроки при наиболее эффективном режиме вытеснения нефти водой. Иногда отличают т. н. приконтурное З., при котором нагнетательные скважины располагаются на контуре нефтеносности (применяется на месторождениях, где проницаемость пласта за контуром или на контуре нефтеносности существенно ухудшается). Типичный пример законтурного З. - эксплуатация Бавлинского месторождения в Татарской АССР, где полностью этот процесс был осуществлен. В результате вчетверо было уменьшено число нефтяных скважин и достигнута длительная стабильная добыча нефти.

При внутриконтурном З. закачка воды осуществляется непосредственно в нефтяную залежь, обычно в нагнетательные скважины, расположенные рядами (цепочками), благодаря чему залежь как бы «разрезается» водой на отдельные, более мелкие залежи, которые можно эксплуатировать самостоятельно. Количество эксплуатационных скважин, находящихся в зоне высокого давления в пласте (вблизи от нагнетательных скважин), возрастает, благодаря чему резко повышаются темпы добычи нефти и сокращаются сроки разработки месторождений. Классический пример внутриконтурного З. - разработка Ромашкинского месторождения девонской нефти в Татарской АССР. Осуществляемое с 1954 разделение огромной залежи цепочками нагнетательных скважин позволило в несколько раз сократить срок извлечения основных запасов нефти. Для более мелких залежей применяют продольное и поперечное внутриконтурное З. - в зависимости от направления «разрезающих» рядов по отношению к структуре.

Площадное З. - наиболее интенсивный метод, при котором к минимуму сводится явление интерференции скважин (См. Интерференция скважин) одинакового назначения и достигают максимума дебиты скважин при прочих равных условиях. Площадное З. обычно применяют или с начала разработки на залежах с очень низкой проницаемостью пласта, где др. Разновидности З. недостаточно эффективны, или после разработки залежи без поддержания пластового давления в качестве т. н. вторичного метода добычи нефти.

На многих нефтяных залежах применяются сочетания описанных разновидностей З. В процессе разработки часто приходится видоизменять систему З. для дальнейшей интенсификации добычи нефти.

Лит.: Справочник по добыче нефти, под ред. И. М. Муравьева, т. 1, М., 1958; Проектирование разработки нефтяных месторождений, М., 1962.

Ю. П. Борисов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Заводнение" в других словарях:

    - (a. flooding; н. Fluten, Wasserfluten; ф. inondation artificielle, injection d eau; и. inundacion) способ воздействия на пласт при разработке нефт. м ний, при к ром поддержание и восстановление пластового давления и баланса энергии… … Геологическая энциклопедия

    Метод поддержания и восстановления давления для вытеснения нефти из пласта путем закачки воды. Применяют заводнение законтурное, внутриконтурное, площадное и др. Заводнением достигаются высокие темпы отбора жидкости из пластов и повышенная… … Большой Энциклопедический словарь

    Сущ., кол во синонимов: 1 термозаводнение (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    заводнение - — Тематики нефтегазовая промышленность EN waterflooding … Справочник технического переводчика

Выбор системы извлечения нефти и обустройства нефтяных месторождений зависит от десятков факторов: от глубины залегания и качества продуктивных пластов: количества извлекаемых запасов, их структуры по степени изученности (): характеристик коллекторов; состава и свойств нефти: газового фактора и состава попутных газов: давления насыщения нефти газом: свойств и условий залегания пластовых вод; положения водо-нефтяного контакта.

Кроме перечисленных основных показателей разработки при обустройстве месторождения учитываются природно-климатические характеристики, инженерно-геологические условия.

Одно из основных требований к разработке - рационализация: обеспечение заданных темпов добычи с минимальными капитальными вложениями и минимальными воздействиями на ОС. Важнейшей составной частью проектирования разработки месторождений является выделение эксплуатационных объектов. Часть нефтяной залежи, выделяемая для эксплуатации самостоятельной сеткой эксплуатационных и нагнетательных скважин, называется эксплуатационным объектом.

Разведанные месторождения считаются подготовленными для промышленной разработки при соблюдении следующих условий:

Требования к генеральному плану

Схема генерального плана месторождения предусматривает размещение устьев нефтяных, газовых, нагнетательных одиночных и кустов скважин, ГЗУ, ДНС. установок предварительного сброса пластовых вод (УПС), кустовых насосных станций (КНС), КС, инженерных коммуникаций (автодорог, нефте- и газопроводов, водоводов, ЛЭП, линий связи, катодной защиты и др.), обеспечивающих процессы сбора и транспортировки продукции скважин, а также снабжение электроэнергией, теплом, водой и воздухом.

Размещение производственных и вспомогательных зданий и сооружений необходимо производить по их функциональному и технологическому назначению с учетом взрывной и пожарной опасности. При размещении сооружений нефртедобычи на прибрежных участках водоемов планировочные отметки площадок принимаются на 0,5 м выше наивысшего горизонта вод с вероятностью его превышения один раз в 25 лет (устья скважин, ГЗУ) и один раз в 50 лет (КС, ЦПС, ДНС, УПС).

Природоохранные мероприятия и элементы ОВОС присутствуют в нормативных документах по освоению месторождений. Однако при сложившейся практике взаимодействия участников разработки месторождений типовые природоохранные проблемы решаются не превентивным образом, а по мере их возникновения. Существует закономерность - чем в более удаленном месте расположено месторождение, тем менее жесткие экологические ограничения к нему предъявляются и тем больший экологический ущерб наносится ОС.

Во избежание социально-экологических проблем на поздних стадиях нефтедобычи уже при проектировании освоения месторождений следует проводить консультации со всеми заинтересованными организациями и лицами. Эксплуатация нефтепромыслов наносит вред ОС независимо от конструктивных особенностей сооружений и объемов добываемых УВ. Проведение дорогостоящих экологических мероприятий должно проводиться своевременно (ликвидация скважин, амбаров-накопителей, рекультивация земель), а не отодвигаться на неопределенный срок.

Технологическая безопасность работы сооружений в цепочке "добыча - сбор - подготовка - транспортировка" во многом обеспечивается равномерностью отработки запасов нефти. Для этого необходимо располагать достоверной информацией о распределении энергетического потенциала залежи, который отражается с помощью карт изобар. Здесь принципиально важным является выбор схемы кустования скважин. Известно, что чем крупнее кустовые площадки, тем дороже бурение скважины, поскольку необходимы большие отходы забоев от вертикали (до 2-4 км и более). Однако при этом сокращается стоимость коридоров коммуникаций и повышается степень экологической безопасности промысла в целом.

Куст скважин

Под кусты скважин отводится площадка естественного или искусственного участка территории с расположенными на ней устьями скважин, технологическим оборудованием, инженерными коммуникациями и служебными помещениями. В составе укрупненного куста может находиться несколько десятков наклонно-направленных скважин. Суммарный дебит по нефти одного куста скважин принимается до 4000 , а газовый фактор - до 200 .

В состав технологических сооружений куста скважин обычно входят:

  • приустьевые площадки добывающих и нагнетательных скважин;
  • замерные установки;
  • блоки подачи реагентов-деэмульгаторов и ингибиторов;
  • блоки газораспределительные и водораспределительные;
  • блоки закачки воды в нагнетательные скважины;
  • станции управления насосами ЭЦН и ШГН;
  • фундаменты под станки-качалки;
  • трансформаторные подстанции;
  • площадки под ремонтный агрегат;
  • емкость-сборник и технологические трубопроводы.

В составе сооружений кустовой площадки может находиться узел подготовки сточных вод (УПСВ) с локальной закачкой воды в пласт. В этом случае отсутствует энергоемкая перекачка пластовых вод к пунктам сепарации нефти и обратно, а в составе транспортных коридоров отсутствуют агрессивные пластовые флюиды, что повышает экологическую безопасность промысла.

Строительство скважин с большими отходами забоя ограничивает применение глубинных штанговых насосов ввиду осложнений, связанных с истиранием труб. Во избежание аварий при выборе насосного оборудования предпочтение отдается ЭЦН и гидроприводным насосным системам в условиях закрытой системы сбора нефти и газа. Такие системы дают возможность подачи ингибиторов для предотвращения коррозии и парафинообразования.

Система сооружений подготовки нефти, сброса и закачки вод строится в зависимости от распределения запасов по площади залежи, темпов добычи, степени обводненности и газонасыщенности нефти, величины давления на устье скважины, расположения кустов скважин ( рис. 5.1). Эти объекты должны обеспечивать:

  • герметизированный сбор и транспортировку продукции скважин до ЦПС;
  • отделение газа от нефти и бескомпрессорную транспортировку газа первой ступени сепарации до сборных пунктов, ГПЗ и на собственные нужды;
  • замер расходов продукции отдельных скважин и кустов, учет суммарной добычи продукции всех скважин;
  • предварительное обезвоживание нефти.


Рис. 5.1.

Групповые замерные установки

Газожидкостная смесь из добывающих скважин поступает на ГЗУ, в которой в автоматическом режиме производится периодическое измерение в замерном сепараторе дебитов жидкости и газа каждой скважины. Количество установок определяется расчетами. На площадках ГЗУ размещаются блоки закачки реагента-деэмульгатора и ингибитора коррозии.

Дожимная насосная станция

В тех случаях, когда расстояние от кустов скважин до ЦПС велико, а устьевого давления недостаточно для перекачки флюидов, сооружают ДНС. На ДНС смесь попадает по нефтесборным трубопроводам после ГЗУ.

В состав ДНС входят следующие блочные сооружения:

  • первой ступени сепарации с предварительным отбором газа;
  • предварительного обезвоживания и очистки пластовой воды;
  • замера нефти, газа и воды;
  • насосный и блок компрессорный воздуха;
  • закачки реагента перед первой ступенью сепарации;
  • закачки ингибиторов в газо- и нефтепроводы;
  • аварийных емкостей.

Сооружение ДНС необходимо потому, что насосное оборудование не позволяет перекачивать смеси с большим содержанием газа из-за возникновения кавитационных процессов. Газ, отделившийся в результате снижения давления на первой ступени сепарации, чаще всего подается на факел сжигания или для использования на местные нужды. Нефть и вода с растворенным оставшимся газом поступают в сепараторы второй ступени на ЦПС и УПН.

Центральный пункт сбора

На ЦПС сырая нефть проходит полный цикл обработки, который включает двух- или трехступенчатое разгазирование нефти с помощью сепараторов и доведение нефти по упругости насыщенных паров до необходимых кондиций. Газ после сепарации очищается от капельных жидкостей и подается на утилизацию или переработку. Газ первой и второй ступени сепарации транспортируется под собственным давлением. Газ концевой ступени для дальнейшего использования требует компримирования.

Здесь же на ЦПС производится обезвоживание и обессоли-вание нефти до товарных кондиций. Попутно добываемые воды отделяются от сырой нефти на установке подготовки нефти (УПН) в составе ЦПС. В специальном резервуаре происходит отстаивание нефти, подогрев нефтяной эмульсии в трубчатых печах и обессоливание. После этого товарная нефть поступает в резервуар с последующей откачкой в МН.

Резервуарные парки

Наличие резервного парка емкостей - обязательный атрибут всех технологических схем сбора, подготовки и транспортировки нефгги. Стандартные резервуары типа РВС используются для создания запасов:

  • сырья, поступающего на УПН, необходимого в количестве суточного объема продукции скважин;
  • товарной нефти в объеме суточной производительности УПН.

Кроме того, резервуары различных объемов необходимы для приема пластовых и сточных вод, а также для аварийных сбросов.

Для сброса парафиновых отложений от зачистки (пропарки) резервуаров устраиваются земляные амбары-накопители. Кроме того резервуары являются источником загрязнения атмосферы за счет испарения хранящихся в них УВ.

Компрессорные станции

КС могут быть самостоятельными объектами обустройства месторождений или входить в комплекс технологических сооружений ЦПС. КС предназначены для подачи нефгтяного газа на ГПЗ, для компримирования газа в системе газлифтной добычи и при подготовке его к транспортировке.

Для удаления газа из полости поршневого компрессора на приемном газопроводе каждой ступени сжатия компрессора предусматривается свеча сброса газа с установкой на ней запорной арматуры. Высота свечи не менее 5 м и определяется расчетами рассеивания газа.

Факельная система

В факельную систему аварийного сжигания ДНС направляется нефтяной газ, который не может быть принят к транспортировке, а также газ от продувки оборудования и трубопроводов.

Диаметр и высота факела определяются расчетом с учетом допустимой концентрации вредных веществ в приземном слое воздуха, а также допустимых тепловых воздействий на человека и объекты. Высота трубы должна быть не менее 10 м, а для газов, содержащих сероводород, не менее - 30 м. Скорость газа в устье факельного ствола принимается с учетом исключения отрыва пламени, но не более 80 м/с.

  • блоки для дозирования и подачи ингибиторов и химреактивов;
  • склад для хранения химреактивов.
  • Трубопроводы нефти и газа

    В систему сбора и транспортировки продукции добывающих скважин входят:

    • выкидные трубопроводы от устья скважин до ГЗУ;
    • коллекторы, обеспечивающие сбор продукции от ГЗУ до пунктов первой ступени сепарации ДНС или ЦПС;
    • нефтепроводы для подачи газонасыщенной или разгазированной обводненной нефти или безводной нефти от пунктов сбора и ДНС до ЦПС;
    • нефтепроводы для транспортирования товарной нефти от ЦПС до головной НПС магистрального трубопровода:
    • газопроводы для подачи нефтяного газа от установок сепарации до УПГ, КС, ЦПС, ГПЗ и собственных нужд:
    • газопроводы для подачи газа от ЦПС до головной КС магистрального трубопровода.

    История развития заводнения n 1846 год – пробурена первая нефтяная(разведочная) скважина, Биби Айбатское месторождение вблизи Баку n 1864 год – пробурена первая эксплуатационная скважина в долине реки Кудако на Кубани (рождение нефтяной промышленности России.) n 1880 год – первое упоминание о возможности вытеснения нефти водой в пластовых условиях. n 1940 50 е годы – широкое распространение заводнения на нефтяных месторождениях по всему миру, появление ряда новых систем заводнения. n 1946 год – первое применение законтурного заводнения в СССР на Туймазинском месторождении. n 1954 год – внедрение внутриконтурного заводнения на девонской залежи Ромашкинского месторождения. n 1957 год – применение очагового заводнения на участке Леонидовского нефтяного месторождения

    Основные коэф-ы характеризующие заводнение § Коэффициент дренирования залежей § Коэффициент охвата пластов заводнением § Коэффициент вытеснения нефти водой из пористой среды Коэффициент дренирования залежей определяет долю их общего нефтенасыщенного объема, в котором обеспечена фильтрация жидкостей данной системой скважин (V дрен), и выражается отношением: Коэффициент охвата пластов заводнением определяет долю объема дренируемого нефтенасыщенного пласта, охваченного (занятого) водой и выражается отношением Коэффициент вытеснения нефти водой из пористой среды определяет степень замещения нефти водой в пористой среде и выражается отношением

    Факторы эффективности заводнения На показатели эффективности заводнения влияют следующие факторы: 1) на коэффициент дренирования залежей – n Расчлененность, прерывистость (монолитность), сбросы пластов. n Условия залегания нефти, газа и воды в пластах. n Размещение добывающих и нагнетательных скважин относительно границ выклинивания пластов. n Состояние призабойных зон пластов, как следствие качества вскрытия и изменения при эксплуатации. 2) на коэффициент охвата пластов заводнением – n Макронеоднородность пластов (слоистость, зональная изменчивость свойств). n Трещиноватость, кавернозность (тип коллектора). n Соотношение вязкостей нефти и вытесняющего рабочего агента. 3) на коэффициент вытеснения нефти водой – n Микронеоднородность пористой среды по размеру пор и каналов (средняя проницаемость). n Смачиваемость поверхности пор, степень гидрофильности и гидрофобности среды. n Межфазное натяжение между нефтью и вытесняющей водой.

    Системы разработки месторождения с использованием заводнения n Системы разработки залежей классифицируют в зависимости от размещения скважин и вида энергии, используемой для перемещения нефти n Размещение скважин: равномерное, неравномерное. n Системы разработки с размещением скважин по равномер ной сетке различают: по форме сетки; по плотности сетки; по темпу ввода скважин в работу; по порядку ввода скважин в работу относительно друга и структурных элементов залежи. n Плотность сетки скважин отношение площади нефтеносности к числу добывающих скважин. n По темпу ввода скважин в работу можно выделить одновременную (еще называют «сплошная») и замедленную системы разработки залежей (сгущающаяся и ползучая). n По виду используемой энергии: естественная, искуственная.

    Виды заводения Законтурное Применяется на небольших (до 5 км) залежах Закачка воды осуществляется в ряд нагнетательных скважин, расположенных за внешним контуром нефтеносности (100 1000 м). Приконтурное Применяется на небольших залежах при существенно сниженной проницаемости пласта в законтурной области или при затруднении связи законтурной воды с нефтенасыщенной частью пласта (например, при выпадении окислившихся тяжелых фракций нефти в области ВНК). Закачка воды осуществляется непосредственно в область водонефтяного контакта. Внутриконтурное Применяется на крупных залежах для исключения экранирования и консервации центральной части залежи. Разделяется на блоковое (рядное), площадное, избирательное, очаговое.

    Схема законтурного заводнения Схема достаточно эффективена при небольшой ширине залежей (до 5- 6 км), малой относительной вязкости пластовой нефти, высокой проницаемости коллектора (0, 4- 0, 5 мкм 2 и более), сравнительно однородном строении продуктивного пласта, хорошей сообщаемости залежи с законтурной областью.

    Законтурное заводнение n При законтурном заводнении, воду закачивают в ряд нагнетательных скважин, расположенных за внешним контуром нефтеносности на расстоянии 100- 1000 м. Его применяют на объектах с малорасчлененными по толщине продуктивными пластами, обладающими сравнительно высокой гидропроводностью, при небольшой ширине залежей (до 4- 5 км, а при наиболее благоприятном строении пластов и более). Примером может служить Туймазинское месторождение (Башкирия), где начали впервые применять заводнение в СССР (1948 г.). Широкого распространения оно не получило. n При числе рядов добывающих скважин больше пяти центральная часть месторождения слабо подвергается воздействию законтурным заводнением, пластовое давление здесь падает, и эта часть разрабатывается при режиме растворенного газа, а затем после образования ранее не существовавшей (вторичной) газовой шапки – пи газонапорном.

    Схема приконтурного заводнения При этом виде заводнения нагнетательные скважины располагают на некотором удалении от внешнего контура нефтеносности в пределах водонефтяной зоны залежи. Применяется в основном при той же характеристике залежей, что и законтурное заводнение, но при значительной ширине водонефтяной зоны, а также при плохой гидродинамической связи залежи с законтурной зоной.

    Схема блокового заводнения При блоковом заводнении нефтяную залежь разрезают рядами нагнетательных скважин на полосы (блоки), в пределах которых размещают ряды добывающих скважин такого же направления.

    Рядное и блоковое заводнение n Рядная система разработки применяется на крупных нефтяных месторождениях платформенного типа с широкими водонефтяными зонами. Широкие водонефтяные зоны отрезают от основной части залежи и разрабатывают их по самостоятельным системам. На средних и небольших по размеру залежах применяют поперечное разрезание их рядами нагнетательных скважин на блоки (блоковое заводнение). Ширина площадей и блоков выбирается с учетом соотношения вязкостей и прерывистости пластов (литологического замещения) в пределах до 3- 4 км, внутри размещают нечетное число рядов добывающих скважин. n Практически применяют одно, трех, пятирядную схемы расположения скважин, представляющие собой соответственно чередование одного ряда добывающих скважин и ряда нагнетательных скважин, трех рядов добывающих и ряда нагнетательных скважин, пяти рядов добывающих и ряда нагнетательных скважин. Более пяти рядов добывающих скважин обычно не применяют по той же причине, что и при законтурном заводнении

    Схемы сводового заводнения Разновидность сводового заводнения выбирают в зависимости от формы и размера залежи и относительного размера ВНЗ.

    Сводовое заводнение n При сводовом заводнении ряд нагнетательных скважин размещают на своде структуры или вблизи него. Если размеры за лежи превышают оптимальные, это заводнение сочетают с за контурным. Сводовое заводнение подразделяют на: n а) осевое (нагнетательные скважины размещают по оси структуры - кумский горизонт Новодмитриевского месторождения в Краснодар ском крае, пласты группы А Усть Балыкского месторождения в Западной Сибири); n б) кольцевое (кольцевой ряд нагнетательных скважин с радиусом, приблизительно равным 0, 4 радиуса залежи, разрезает залежь на центральную и кольцевую пло щади - Миннибаевская площадь Ромашкинского месторожде ния); n в) центральное заводнение как разновидность кольцевого (вдоль окружности радиусом 200- 300 м размещают 4- 6 нагнетательных скважин, а внутри имеется одна или несколько добывающих скважин).

    Схемы площадного заводнения Разновидность внутриконтурного заводнения, при котором в условиях общей равномерной сетки скважин нагнетательные и добывающие скважины чередуются в строгой закономерности, установленной проектным документом на разработку.

    Площадное заводнение n Характеризуется рассредоточенной закачкой рабочего агента в залежь по всей площади ее нефтеносности. Площадные системы заводнения по числу скважинно точек каж догоэлемента залежи с расположенной в его центре одной добывающей скважиной могут быть четырех, пяти семи и девя титочечной и линейной системами n Линейная система -это однорядная система блокового заводнения, причем скважины размещают не друг против друга, а в шахматном порядке. Отношение нагнетательных и добывающих скважин составляет 1: 1; F=2 a 2; S=a 2; n Пятиточечная система. Элемент системы представляет собой квадрат, в углах которого находятся добывающие скважины, а в центре – нагнетательная. Для этой системы отношение нагнетательных и добывающих скважин составляет 1: 1, =1. n Семиточечная система. Элемент системы представляет собой шестиугольник с добывающими скважинами в вершине и нагнетательной в центре. Добывающие скважины расположены в углах шестиугольника, а нагнетательная – в центре. Параметры =1/2, т. е. на одну нагнетательную скважину приходится две добывающие. n Девятиточечная система. Соотношение нагнетательных скважин и добывающих составляет 1: 3, так что =1/3. Самая интенсивная из рассмотренных систем с площадным расположением скважин пятиточечная, наименее интенсивная девятиточечная.

    Хар-ки систем площадного заводнения n 1 – прямолинейная система: m=1: 1; F=2 a^2; S=a^2; n 2 – пятиточечная система: m=1: 1; F=2 a^2; S=a^2; n 3 – девятиточечная система: m=1: 3; F=4 a^2; S=a^2; n 4 – обращенная девятиточ я система: m=3: 1; F=1, 33 a^2; S=a^2; n 5 – квадратно семиточечная система: m=1: 2; F=3 a^2; S=a^2; И др. * m – отношение нагнетателных скважин к добывающим F – площадь на одну нагнетательную S – площадь на одну скважину в общем

    Анизотропия пласта. n Анизотропия, или направленная проницаемость, может значительно улучшить коэффициент охвата На рисунке показано, какое влияние оказывает выбор системы заводнения на коэффициент охвата при различных соотношениях проницаемостей по осям X и Y. n Для демонстрации этого эффекта приведена таблица. Тип системы Еа на момент Время до прорыва Еа при ВНФ=10 Закачка в единицах прорыва ПППН при ВНФ=10 5 -ти точ. 52, 5 625 88 2, 0 Лин-ая рядная 67, 5 804 98 1, 4

    Материальный баланс n Материальный баланс – простая концепция, подчиняющаяся закону сохранения масс, согласно которому привнесенная масса равна извлеченной плюс то, что накопилось или осталось (в пласте, например). n Vизвлечённый = ΔVпервоначальный + Vпривнесённый – наиболее общий вид ур я мат. баланса = + для давления выше давления насыщения для давления ниже давления насыщения для линейного заводнения пластов при начальной насыщенности подвижной воды

    Некоторые обозначения для ур-й n B – коэффициент объемного расширения n Bobp – коэффициент объемного расширения нефти ниже давления насыщения n Boi – коэффициент объемного расширения нефти начальный n Box – коэффициент объемного расширения нефти в опред ый момент времени n Bw – коэффициент объемного расширения воды n Bt – коэффициент объемного расширения нефти по времени n Bti – коэффициент объемного расширения нефти по времени, начальный n Bg – коэффициент объемного расширения газа n Bgi – коэффициент объемного расширения газа начальный n C – сжимаемость n Ct – общая сжимаемость n Ce – эффективная сжимаемость n N – геологические запасы нефти n Nр – накопленная добыча n Rp – накопленное газосодержание n Rsoi – начальное содержание растворенного газа в нефти n We – приток воды из за контура n Winj – дебит нагнетательной скважины n Wp – накопленная закачка n ΔP – изменение давления от начального пластового (атм) n Vo, Vw, Vf объёмы нефти, воды, пор

    Компенсация отбора жидкости. Коэффициент компенсации n Компенсация отбора жидкости – это комплекс мероприятий направленный на поддержание пластовой энергии за счет замещения извлеченного объема углеводородов таким же объемом воды. Если накопленная компенсация обора жидкости закачкой воды по объекту (участку) меньше 100 %, то для покрытия дефицита закачки воды нормы закачки устанавливают технологическим режимом работы нагнетательных скважин больше нормы текущих отборов жидкости на 30 50 % и более, исходя из производительности применяемого для закачки воды оборудования и приемистости действующих нагнетательных скважин. n Для оценки степени компенсации отборов жидкостей из пласта закачкой вводится понятие коэффициента компенсации. n Для определения компенсации отбора жидкости в % нужно объем закачки поделить на объем отбора жидкости в пластовых условиях и умножить на 100. (не умножая на 100 получим коэффициент компенсации).

    Компенсация отбора жидкости Для определения компенсации отбора жидкости в % нужно объем закачки поделить на объем отбора жидкости в пластовых условиях и умножить на 100. (не умножая на 100 получим коэффициент компенсации). График изменения компенсации отбора жидкости