Какие материалы используются для создания комбинированной брони. Активная танковая броня. Дымовые завесы и комплексы оптико-электронного противодействия

Гомогенная броня.

На заре появления сухопутной бронетехники, основным типом защиты были простые стальные листы. Их старшие товарищи, броненосцы и бронепоезда, к этому времени успели обзавестись цементированной и многослойной броней, но, в серийное танкостроение эти типы брони пришли лишь после ПМВ.

Гомогенная броня представляет собой горячекатаные листы или литые конструкции, из которых тем или иным методом собирают броневой корпус. Первым методом сборки были заклепки, как самый дешевый и быстрый на тот момент. Позже болтовые соединения существенно потеснили заклепки. К середине ВМВ основным методом соединения броневых плит стала электродуговая сварка. Первоначально сварка преимущественно была ручная газопламенная, но, развитие электротехники и освоение массового производства электродов достаточно высокого качества, привели к более широкому использованию электродуговой сварки. С начала 1930-х годов делались попытки внедрения в серийное производство автоматической электродуговой сварки. Но, достичь приемлемого качества при приемлемой стоимости удалось только в годы ВМВ в СССР, когда при производстве танков Т-34-76 и танков семейства КВ, впервые в мире стали применять автоматическую электродуговую сварку под слоем порошкового флюса.

Несмотря на изобретение электродуговой сварки еще в конце 19-го века российским инженером Н.Н. Бенардосом, вплоть до конца ВМВ в танкостроении ограниченно применялось соединение броневых плит на болты и заклепки. Это стало следствием проблем, которые возникают при сварке толстых плит из среднеуглеродистых сталей (0,25-0,45%С). Высокоуглеродистые стали в танкостроении даже сейчас практически не применяются.

Также, сложно добиться качественных сварных швов при сварке легированных и недостаточно очищенных сталей. Для измельчения структурного зерна сталей используют добавки марганца и других легирующих элементов. Они так же, повышают прокаливаемость сталей, тем самым, снижая локальные напряжения в сварном шве. Иногда может применяться закалка броневых плит, но, этот метод применяется крайне ограниченно, так как, предварительно закаленные броневые плиты при сварочном соединении создают еще большие проблемы из-за неоднородности поля внутренних напряжений. Для снятия напряжений обычно используют нормализационный отжиг или низкий отпуск. Но, для достижения существенного повышения твердости, вначале сталь должна быть закаленной на мартенсит или на троостит (то есть, высокая закалка). Высокая закалка толстостенных деталей сложной формы всегда представляет большую сложность, если это деталь величиной с корпус танка, то задача практически не решаемая.

Для повышения стойкости гомогенной брони желательно повысить твердость поверхности броневых плит, а сердцевины и строну, обращенную внутрь, оставить вязкой и сравнительно эластичной. Этот подход впервые был реализован на броненосцах конца 19-го века. В бронетехнике это решение применялось намного уже.

Проблема цементации заключается в необходимости долгой выдержки детали в порошковом карбюризаторе (смесь на основе кокса, нескольких процентов извести, и небольшой добавки поташа) при температурах 500-800*С. При этом проблематично добиться равномерной толщины карбидного слоя. К тому же, сердцевина стальной детали становится крупнозернистой, что резко снижает ее усталостную прочность и несколько снижает все прочностные параметры.

Более совершенный метод – азотирование. Азотирование проводить технически сложнее, но, после азотирования деталь подвергается нормализационному отжигу с охлаждением в масле. Это несколько компенсирует увеличение структурного зерна. Но, глубина слоя азотирования не превышает одного миллиметра при времени азотирования в десятки часов.

Прекрасный метод – цианидирование. Проводится быстрее, твердость не ниже, температура нагрева сравнительно небольшая. Но, окунать броневые плиты (и тем более, корпус танка) в расплавленную смесь цианидов, это, мягко говоря, неэкологично, да и вообще, сомнительное удовольствие.

Оптимальные свойства броневой защиты можно достичь использованием сварного корпуса из среднеуглеродистой стали, а сверху закрыть корпус сварными и/или соединенными на резьбу плитами из закаленной высокопрочной стали.

Композитная броня.

Композитные материалы это, в общем случае, материалы, сочетающие в себе два и более компонента с сильно отличающимися свойствами. К ним можно отнести армированные, многослойные, наполненные, и другие композиции (“композиция”, в данном значении, можно примерно перевести как “смесь” или “совмещение”).

К классическим примерам композитных материалов можно отнести простые железобетонные плиты, или, например, смесь кобальта и порошкового карбида вольфрама, используемую для производства твердосплавных наплавок быстрорежущего инструмента. При этом, классическое значение, и наибольшую известность термин “композитные материалы” приобрел применительно к композициям на основе полимерных матриц, усиленных тем или иным армированием (волокно, порошки, ровинги, войлоки (нетканые текстили), полые сферы, ткани, и пр.).

Применительно к броневой защите, композитная броня это броня, включающая конструктивные элементы из материалов с сильно отличающимися свойствами. Как мы уже сказали выше, внешние плиты желательно сделать максимально твердыми, а несущей основе оставить хорошую обрабатываемость, и высокую вязкость.

Следовательно, композитная броня может включать в себя различные сочетания из вязкого и упругого материал и высокотвердого материала: среднеуглеродистая сталь + керамика, алюминий + керамика, титановый сплав + закаленная инструментальная сталь, кварцевое стекло + броневая сталь, стеклопластик + керамика + сталь, сталь + СВМПЭ + корундовая керамика, и мн. др. Обычно, внешняя плита изготавливается из материала со средними прочностными свойствами, она выполняет функцию противокумулятивного экрана, а так же, обеспечивает защиту твердых хрупких элементов от попаданий осколков и пуль. Самый нижний слой выполняется несущим, оптимальный материал для него броневая сталь и/или алюминиевые сплавы. Если позволяет средства, то титановые сплавы. Для остановки наиболее эффективных противотанковых средств может дополнительно использоваться подбой из высокопрочного волокна (обычно кевлар, но, иногда используют нейлон, лавсан, капрон, СВМПЭ, и пр.). Подбой останавливает осколки, возникающие при неполном пробивании брони, обломки разрушившегося сердечника БОПС, мелкие осколки от небольшой пробоины кумулятивным снарядом. Кроме того, подбой повышает теплоизоляцию и звукоизоляцию машины. Веса подбой особо не добавляет, больше влияя на стоимость бронетехники.

В отличие от гомогенной брони, любая композитная броня работает на разрушение. Проще говоря, верхний экран легко пробивается практически любыми ПТ средствами. Твердые пластины выполняют свою функцию в процессе более или менее хрупкого разрушения, а несущая часть брони останавливает уже рассеянный удар кумулятивной струи или обломки сердечника БОПС. Подбой подстраховывает от более мощных ПТ средств, но, его возможности весьма ограничены.

При проектировании композитной брони так же учитываются три немаловажных фактора: стоимость, плотность, и обрабатываемость материал. Камнем преткновения керамики является обрабатываемость. Кварцевое стекло, так же, имеет плохую обрабатываемость, да и солидную стоимость. Стали и сплавы вольфрама отличаются высокой плотностью. Полимеры, хотя и весьма легкие, но, стоят обычно дорого, да и чувствительны к огню (как и к длительному нагреву). Алюминиевые сплавы сравнительно дороги, и имеют низкую твердость. Идеального материала, к сожалению, нет. Но, те или иные сочетания различных материалов, часто позволяют оптимально решить техническую задачу при приемлемой стоимости.

Очень часто можно слышать как броню сравнивают в соответствии с толщиной стальных пластин 1000, 800мм. Или, например, что определённый снаряд может пробить какое-то «n»-количество мм брони . Факт в том, что сейчас данные расчёты не объективны. Современная броня не может быть описана как эквивалент какой-либо толщины гомогенной стали.

В настоящее время существует два типа угроз: кинетическая энергия снаряда и химическая энергия. Под кинетической угрозой понимается бронебойный снаряд или, проще говоря, болванка обладающая большой кинетической энергией. В данном случае нельзя рассчитывать защитные свойства брони , исходя из толщины стальной пластины. Так, снаряды с обедненным ураном или карбидом вольфрама проходят сквозь сталь как нож в масло и толщина любой современной брони , если бы она была гомогенной сталью, не выдержала бы попадания подобных снарядов . Нет никакой брони толщиной в 300мм, которая эквивалентна 1200мм стали, и следовательно способной останавливать снаряд , который будет застревать и торчать в толще броневого листа. Успех защиты от бронебойных снарядов кроется в изменении вектора его воздействия на поверхность брони .

Если повезёт, то при попадании будет лишь небольшая вмятина, а если не повезёт, то снаряд прошьёт всю броню , независимо от того толстая она или тонкая. Проще говоря, броневые листы являются относительно тонкими и твёрдыми, и повреждающий эффект во многом зависит от характера взаимодействия со снарядом . В американской армии для увеличения твёрдости брони используется обедненный уран , в других странах карбид вольфрама , который фактически является более твёрдым. Около 80% способности танковой брони останавливать снаряды -болванки приходится на первые 10-20 мм современной брони .

Теперь рассмотрим химическое воздействие боеголовок .
Химическая энергия представлена двумя типами: HESH (Противотанковые бронебойно-фугасные) и HEAT (Кумулятивный снаряд ).

HEAT — сегодня больше распространена, и не имеет никакого отношения к высоким температурам. В HEAT используется принцип фокусировки энергии взрыва в очень узкой струе. Струя образуется, когда геометрически правильный конус снаружи обкладывают взрывчаткой . При детонации 1/3 энергии взрыва используется на формирование струи. Она за счёт высокого давления (не температуры) проникает сквозь броню . Простейшей защитой от данного типа энергии служит отставленные на полметра от корпуса слой брони , при этом получается рассеивание энергии струи. Этот приём использовался в период второй мировой войны, когда русские солдаты обкладывали корпус танка сеткой-рабицей от кроватей. Сейчас подобным образом поступают израильтяне на танке Меркава, они для защиты кормы от ПТУР и гранат РПГ используют стальные шары, висящие на цепях. Для этих же целей на башне установливается большая кормовая ниша, к которой они крепятся.

Другим методом защиты является использование динамической или реактивной брони . Возможно также применение комбинированной динамической и керамической брони (такая как Chobham ). При соприкосновении струи расплавленного металла с реактивной бронёй происходит детонация последней, образующаяся ударная волна дефокусирует струю, устраняя её поражающий эффект. Броня Chobham работает подобным образом, но в данном случае в момент взрыва отлетают куски керамики, превращающиеся в облако плотной пыли, которая полностью нейтрализует энергию кумулятивной струи.

HESH (Противотанковые бронебойно-фугасные) — боеголовка работает следующим образом: после взрыва она обтекает броню как глина и передаёт огромный импульс через металл. Далее, подобно биллиардным шарам, частицы брони сталкиваются друг с другом и, тем самым, защитные пластины разрушаются. Материал бронирования способен, разлетаясь на мелкую шрапнель, травмировать экипаж. Защита от такой брони подобна вышеописанной для HEAT.

Резюмируя вышесказанное, хочется отметить, что защита от кинетического воздействия снаряда сводится к нескольким сантиметрам металлизированной брони , когда как защита от HEAT и HESH заключается в создании отставленной брони , динамической защиты , а также некоторых материалов (керамика).

Общие типы брони, которые используются в танках:
1. Стальная броня. Она дешева и её легко сделать. Это может быть монолитный брусок или спаянная из нескольких пластин броня . Обработка повышенной температурой повышает упругость стали и улучшает отражательную способность против кинетического воздействия. Классические танки М48 и Т55 использовали этот тип брони .

2. Перфорированная стальная броня. Это сложная стальная броня , в которой просверлены перпендикулярные отверстия. Отверстия сверлятся из расчёта не больше чем 0,5 от диаметра ожидаемого снаряда . Очевидно, что уменьшается вес брони на 40-50%, но эффективность также падает на 30%. Это делает броню более пористой, что в какой-то мере защищает от HEAT и HESH. Передовые типы этой брони включают твердые цилиндрические наполнители в отверстиях, изготовленные, например, из керамики. Кроме того, перфорированную броню располагают на танке таким образом, чтобы снаряд попадал перпендикулярно ходу просверленных цилиндров. Вопреки расхожему мнению, изначально на танках Леопарда-2 использовалась не Chobham тип брони (тип динамической брони с керамикой), а перфорированную стальную.

3. Керамическая слоистая (тип Chobham) . Представляет из себя комбинированную броню из чередующихся металлических и керамических слоёв. Используемая разновидность керамики, как правило, является тайной, но обычно это глинозем (соли алюминия и сапфир), карбид бора (самая простая твердая керамика), и подобные материалы. Иногда используются синтетические волокна, скрепляющие металлические и керамические пластины. В последнее время в слоистой броне используются керамические матричные соединения. Керамическая слоистая броня очень хорошо защищает от кумулятивной струи (за счет расфокусировки плотной металлической струи), но также хорошо противостоит кинетическому воздействию. Слоистость также позволяет эффективно противостоять современным тандемным снарядам. Единственная проблема керамических пластин в том, что их нельзя согнуть, поэтому слоистая броня построена из квадратов.

В керамическом ламинате применяются сплавы, которые повышают его плотность. Это обычная по современным меркам технология. В основном в качестве материала используется вольфрамовый сплав или, в случае , сплав 0,75% титана с обедненным ураном. Проблема здесь состоит в том, что обедненный уран крайне ядовит при вдыхании.

4. Динамическая броня. Это дешёвый и относительно лёгкий способ защититься от кумулятивных снарядов. Представляет из себя бризантное взрывчатое вещество, сдавленное между двух стальных пластин. При поражении боеголовкой ВВ детонирует. Недостатком является бесполезность в случае кинетического удара снаряда , а также тандемного снаряда . Однако такая броня является лёгкой, модульной и простой. Её можно видеть, в частности, на Советских и Китайских танках. Динамическая броня используется, как правило, взамен передовой слоистой керамической брони .

5. Отставленная броня. Одно из ухищрений конструкторской мысли. В данном случае на определенном расстоянии от основной брони устанавливаются отставленные лёгкие заслоны. Эффективно только против кумулятивной струи.

6. Современная комбинированная броня . Большинство лучших танков оснащаются этим типом брони . По сути здесь используется комбинация из вышеперечисленных типов.
———————
Перевод с английского.
Адрес: www.network54.com/Forum/211833/thread/1123984275/last-1124092332/Modern+Tank+Armor

Использование неметаллических комбинированных материалов в бронировании боевых машин ни для кого не является секретом уже много десятилетий. Подобные материалы в дополнение к основной стальной броне начали широко применять с появлением нового поколения послевоенных танков в 1960-70-х годах. Например, советский танк Т-64 имел лобовую броню корпуса с промежуточным слоем из броневого стеклотекстолита (СТБ), а в лобовых деталях башни использовался наполнитель из керамических стержней. Такое решение значительно повышало стойкость бронеобъекта к воздействию кумулятивных и бронебойных подкалиберных снарядов.

Современные танки оснащены комбинированным бронированием, призванным значительно снижать воздействие поражающих факторов новых противотанковых средств. В частности, стеклотекстолитовый и керамический наполнители используются в комбинированном бронировании отечественных танков Т-72, Т-80 и Т-90, аналогичный материал из керамики применен для защиты британского основного танка «Челленджер» (броня Chobham) и французского основного танка «Леклерк». Композитные пластики используются в качестве подбоя в обитаемых отделениях танков и бронемашин, исключая поражение экипажа вторичными осколками. В последнее время появились бронеавтомобили, корпус которых полностью состоит из композитов на основе стеклопластика и керамики.

Отечественный опыт

Основной причиной использования в бронировании неметаллических материалов является их относительно малая масса при повышенном уровне прочности, а также стойкость к коррозии. Так, керамика сочетает свойства малой плотности и высокой прочности, но при этом она достаточно хрупкая. А вот полимеры обладают как высокой прочностью, так и вязкостью, удобны для формообразования, недоступного для броневой стали. Особенно стоит отметить стеклопластики, на основе которых специалисты разных стран давно пытаются создать альтернативу металлической броне. Такие работы начались после Второй мировой войны в конце 1940-х годов. Тогда всерьёз рассматривалась возможность создания лёгких танков с пластиковой бронёй, так как она при меньшей массе теоретически давала возможность значительно увеличить баллистическую защиту и повысить противокумулятивную стойкость.

Стеклопластиковый корпус для такнка ПТ-76

В СССР опытные разработки противопульной и противоснарядной брони из пластических масс начались в 1957 году. Научно-исследовательские и опытно конструкторские работы велись большой группой организаций: ВНИИ-100, НИИ пластмасс, НИИ стекловолокна, НИИ-571, МФТИ. К 1960 году в филиале ВНИИ-100 была разработана конструкция бронекорпуса лёгкого танка ПТ-76 с использованием стеклопластика. По предварительным расчётам, предполагалось снизить массу корпуса бронеобъекта на 30% и даже больше, при сохранении снарядостойкости на уровне стальной брони такой же массы. При этом большая часть экономии массы достигалась за счёт силовых конструкционных деталей корпуса, то есть днища, крыши, рёбер жёсткости и т.п. Изготовленный макет корпуса, детали которого производились на заводе «Карболит» в Орехово-Зуево, прошёл испытания обстрелом, а также ходовые испытания путём буксировки.

Хотя предполагавшаяся снарядостойкость и подтвердилась, по другим параметрам новый материал преимуществ не давал — ожидаемого значительного снижения радиолокационной и тепловой заметности не произошло. Кроме того, по технологической сложности производства, возможности ремонта в полевых условиях, техническим рискам стеклопластиковая броня уступала материалам из алюминиевых сплавов, которые для легких бронированных машин посчитали более предпочтительными. Разработку бронеконструкций, полностью состоящих из стеклопластика, вскоре свернули, так как полным ходом началось создание комбинированной брони для нового среднего танка (впоследствии принятого на вооружение Т-64). Тем не менее, стеклопластик стали активно использовать в гражданском автомобилестроении для создания колёсных вездеходов повышенной проходимости марки ЗиЛ.

Так что в целом исследования в этой области продвигались успешно, ведь композитные материалы имели немало уникальных свойств. Одним из важных результатов этих работ стало появление комбинированной брони с керамическим лицевым слоем и подложкой из армированного пластика. Выяснилось, что такая защита обладает высокой стойкостью к воздействию бронебойных пуль, в то время как её масса в 2-3 раза меньше стальной брони аналогичной прочности. Такую комбинированную бронезащиту уже в 1960-х годах начали применять на боевых вертолётах для защиты экипажа и наиболее уязвимых агрегатов. Позднее аналогичную комбинированную защиту стали использовать в производстве бронированных кресел пилотов армейских вертолётов.

Результаты, достигнутые в Российской Федерации в области разработок неметаллических броневых материалов, показаны в материалах, опубликованных специалистами ОАО «НИИ Стали», крупнейшим в России разработчиком и производителем комплексных систем защиты, среди них — Валерий Григорян (президент, директор по науке ОАО «НИИ Стали», доктор технических наук, профессор, академик РАРАН), Иван Беспалов (начальник отдела, кандидат технических наук), Алексей Карпов (ведущий научный сотрудник ОАО «НИИ Стали», кандидат технических наук).

Испытания керамической бронепанели для усиления защиты БМД-4М

Специалисты «НИИ Стали» пишут, что за последние годы в организации были разработаны защитные структуры 6а класса с поверхностной плотностью 36-38 килограммов на квадратный метр на основе карбида бора производства ВНИИЭФа (Саров) на подложке из высокомолекулярного полиэтилена. ОНПП «Технология» при участии ОАО «НИИ стали» удалось создать защитные структуры 6а класса с поверхностной плотностью 39-40 килограммов на квадратный метр на основе карбида кремния (тоже на подложке из сверхвысокомолекулярного полиэтилена — СВМПЭ).

Эти структуры имеют неоспоримое преимущество по массе по сравнению с бронеструктурами на основе корунда (46-50 килограммов на квадратный метр) и стальными бронеэлементами, но обладают двумя недостатками: низкой живучестью и высокой стоимостью.

Можно добиться увеличения живучести органокерамических бронеэлементов до одного выстрела на один квадратный дециметр за счет выполнения их наборными из небольших плиток. Пока в бронепанель с подложкой из СВМПЭ площадью пять-семь квадратных дециметров можно гарантировать один-два выстрела, но не более. Не случайно зарубежные стандарты пулестойкости предполагают проведение испытаний бронебойной винтовочной пулей только одним выстрелом в защитную структуру. Достижение живучести до трех выстрелов в квадратный дециметр остается одной из главных задач, которую стремятся решить ведущие российские разработчики.

Высокую живучесть можно получить путем применения дискретного керамического слоя, то есть слоя, состоящего из небольших цилиндриков. Такие бронепанели изготавливает, например, фирма TenCate Advanced Armor и другие компании. При прочих равных условиях они примерно на десять процентов тяжелее панелей из плоской керамики.

В качестве подложки под керамику применяются прессованные панели из высокомолекулярного полиэтилена (типа Dyneema или Spectra) как наиболее легкого энергоемкого материала. Однако он изготавливается только за рубежом. Следовало бы и в России наладить собственное производство волокон, а не только заниматься прессованием панелей из импортного сырья. Возможно применение и композитных материалов на основе отечественных арамидных тканей, но масса и стоимость их в значительной степени превышают аналогичные показатели полиэтиленовых панелей.

Дальнейшее улучшение характеристик композитной брони на основе керамических бронеэлементов применительно к объектам БТВТ проводится по следующим основным направлениям.

Повышение качества бронекерамики. Последние два-три года НИИ Стали тесно сотрудничает с производителями бронекерамики в России — ОАО «НЭВЗ-Союз», ЗАО «Алокс», ООО «Вириал» в плане отработки и улучшения качества бронекерамики. Совместными усилиями удалось значительно улучшить ее качество и практически довести до уровня западных образцов.

Отработка рациональных конструктивных решений. Набор керамических плиток обладает особыми зонами вблизи их стыков, которые имеют пониженные баллистические характеристики. С целью выравнивания свойств панели разработана конструкция «профилированной» бронеплитки. Данные панели установлены на автомобиль «Каратель» и успешно прошли предварительные испытания. Кроме того, отработаны структуры на основе корунда с подложкой из СВМПЭ и арамидов с весом 45 килограмм-сил на квадратный метр для панели 6а класса. Однако применение таких панелей в объектах AT и БТВТ ограничено в связи с наличием дополнительных требований (например, стойкость при боковом подрыве взрывного устройства).

Испытанная обстрелом кабина, защищенная комбинированной броней с керамическими плитками

Для бронетехники типа БМП и БТР характерно повышенное огневое воздействие, так что предельная плотность поражений, которую может обеспечить керамическая панель, собранная по принципу «сплошного бронирования», может быть недостаточной. Решение данной проблемы возможно только при использовании дискретных керамических сборок из шестигранных либо цилиндрических элементов, соразмерных средству поражения. Дискретная компоновка обеспечивает максимальную живучесть композитной бронепанели, предельная плотность поражения которой приближается к аналогичному параметру металлических бронеконструкций.

Однако весовые характеристики дискретных керамических бронекомпозиций с основой в виде алюминиевого или стального броневого листа на пять-десять процентов превышают аналогичные параметры керамических панелей сплошной компоновки. Преимуществом панелей из дискретной керамики является также отсутствие необходимости ее приклейки к подложке. Данные бронепанели установлены и испытаны на опытных образцах БРДМ-3 и БМД-4. В настоящее время такие панели применяются в рамках ОКР «Тайфун», «Бумеранг».

Зарубежный опыт

В 1965 году специалисты американской компании DuPont создали материал, получивший название «Кевлар». Он представлял собой арамидное синтетическое волокно, которое, по утверждению разработчиков, в пять раз прочнее стали при той же массе, но при этом обладающее гибкостью обычного волокна. «Кевлар» стал широко применяться как броневой материал в авиации и при создании средств индивидуальной защиты (бронежилеты, каски и т.п.). Помимо этого, «Кевлар» стали внедрять в систему защиты танков и других боевых бронированных машин в качестве подбоя для защиты от вторичного поражения экипажа осколками брони. Позднее аналогичный материал был создан и в СССР, правда, в бронетехнике он не применялся.

Американская опытная ББМ CAV с корпусом из стеклопластика

Тем временем появлялись более совершенные кумулятивные и кинетические средства поражения, а с ними росли требования к бронезащите техники, что увеличивало её вес. Снижение массы боевой техники без ущерба для защиты было практически невозможно. Но в 1980-х годах развитие технологий и новейшие разработки в области химической промышленности позволили вернуться к идее стеклопластиковой брони. Так, американская компания FMC, занимающаяся производством боевых машин, создала опытный образец башни для боевой машины пехоты M2 Bradley, защита которой представляла собой единую деталь из армированного стекловолокном композита (за исключением лобовой части). В 1989 году начались испытания БМП Bradley с бронекорпусом, в состав которого были включены две верхних детали и днище, состоящие из многослойных композитных плит, а облегчённая рама шасси была выполнена из алюминия. По результатам испытаний было выяснено, что по уровню баллистической защиты данная машина соответствует штатной БМП М2А1 при снижении массы корпуса на 27%.

С 1994 года в США в рамках программы Advanced Technology Demonstrator (ATD) создавался опытный образец боевой бронированной машины, получившей название CAV (Composite Armored Vehicle). Её корпус должен был полностью состоять из комбинированной брони на основе керамики и стеклопластика с использованием новейших технологий, за счет чего планировалось снизить общую массу на 33% при уровне защищённости, эквивалентном броневой стали, и, соответственно, повысить подвижность. Основное предназначение машины CAV, разработку которой поручили компании United Defence, была наглядная демонстрация возможности использования композиционных материалов при изготовлении бронекорпусов перспективных БМП, БРМ и других боевых машин.

В 1998 году был продемонстрирован опытный образец гусеничной машины CAV массой 19,6 т. Корпус был изготовлен из двух слоёв композиционных материалов: наружный из керамики на основе оксида алюминия, внутренний — из стеклопластика, армированного высокопрочным стекловолокном. В дополнение внутренняя поверхность корпуса имела противоосколочный подбой. Стеклопластиковое днище в целях повышения защиты от взрыва мин имело структуру с сотовым основанием. Ходовая часть машины закрывалась бортовыми экранами из двухслойного композита. Для размещения экипажа в носовой части предусматривалось изолированное боевое отделение, выполненное сварным способом из титановых листов и имеющее дополнительное бронирование из керамики (лоб) и стеклопластика (крыша) и противоосколочный подбой. Машина оснащалась дизельным двигателем мощностью 550 л.с. и гидромеханической трансмиссией, ее скорость достигала 64 км/ч, запас хода составлял 480 км. В качестве основного вооружения на корпусе была установлена поднимающаяся платформа кругового вращения с 25-мм автоматической пушкой М242 Bushmaster.

Испытания опытного образца CAV включали исследования возможностей корпуса противостоять ударным нагрузкам (планировалось даже установить 105-мм танковую пушку и провести серию стрельб) и ходовые испытания с общим пробегом в несколько тысяч км. Всего до 2002 года программой предусматривалось израсходовать до 12 млн. долларов. Но работы так и не вышли из опытной стадии, хотя и наглядно продемонстрировали возможность применения композитов взамен классического бронирования. Поэтому разработки в этом направлении были продолжены в области совершенствования технологий создания сверхпрочных пластиков.

Германия также не осталась в стороне от общей тенденции и с конца 1980-х гг. вела активные исследования в области неметаллических бронематериалов. В 1994 году в этой стране была принята на снабжение противопульная и противоснарядная композитная броня Mexas, разработанная компанией IBD Deisenroth Engineering на основе керамики. Она имеет модульную конструкцию и используется в качестве дополнительной навесной защиты для боевых бронированных машин, монтируется поверх основной брони. По заявлениям представителей фирмы, композитная броня Mexas эффективно защищает от бронебойных боеприпасов калибром до 14,5 мм. Впоследствии броневые модули Mexas стали широко использоваться для повышения защищенности основных танков и других боевых машин разных стран, в том числе танка «Леопард-2», боевых машин пехоты ASCOD и CV9035, бронетранспортёров Stryker, Piranha-IV, бронеавтомобилей «Динго» и «Феннек», а также самоходной артиллерийской установки PzH 2000.

Одновременно с 1993 года в Великобритании шли работы по созданию прототипа машины ACAVP (Advanced Composite Armoured Vehicle Platform) с корпусом, полностью сделанным из композита на основе фибергласса и армированного стекловолокном пластика. Под общим руководством агентства DERA (Defence Evaluation and Research Agency) министерства обороны, специалисты компаний Qinetiq, Vickers Defence Systems, Vosper Thornycroft, Short Brothers и другие подрядчики в рамках единой опытно-конструкторской работы создавали композитный корпус типа «монокок». Целью разработок было создание прототипа гусеничной боевой бронированной машины с защитой, аналогичной металлической броне, но со значительно сниженной массой. В первую очередь это диктовалось необходимостью иметь полноценную боевую технику для сил быстрого реагирования, которая могла бы транспортироваться самым массовым военно-транспортным самолётом C-130 Hercules. В дополнение к этому новая технология позволяла снизить шумность машины, её тепловую и радиолокационную заметность, продлить срок службы за счет высокой стойкости к коррозии и в перспективе снизить стоимость производства. Для ускорения работ использовались узлы и агрегаты серийной британской БМП Warrior.

Британская опытная ББМ ACAVP с корпусом из стеклопластика

К 1999 году компания Vickers Defence Systems, осуществлявшая проектные работы и общую интеграцию всех подсистем опытного образца, представила прототип ACAVP на испытания. Масса машины составила около 24 тонн, двигатель мощностью 550 л.с., совмещённый с гидромеханической трансмиссией и усовершенствованной системой охлаждения, позволяет развивать скорость до 70 км/ч по шоссе и 40 км/ч по пересечённой местности. В качестве вооружения на машине установлена 30-мм автоматическая пушка, спаренная с 7,62-мм пулёмётом. При этом была использована стандартная башня от серийной БРМ Fox с бронированием из металла.

В 2001 году испытания ACAVP успешно завершились и, по словам разработчика, продемонстрировали впечатляющие показатели защищённости и подвижности (в прессе было амбициозно заявлено, что англичане якобы «впервые в мире» создали композитную бронированную машину). Композитный корпус обеспечивает гарантированную защиту от бронебойных пуль калибра до 14,5 мм в боковую проекцию и от 30-мм снарядов в лобовую, а сам материал исключает вторичное поражение экипажа осколками при пробитии брони. Предусмотрено также дополнительное модульное бронирование для усиления защиты, которое крепится поверх основной брони и при транспортировке машины по воздуху может быстро демонтироваться. В общей сложности на испытаниях машина прошла 1800 км и при этом не было зафиксировано никаких серьёзных поломок, а корпус успешно выдержал все ударные и динамические нагрузки. Кроме того, сообщалось, что масса машины 24 тонны — это не окончательный итог, этот показатель можно снизить, установив более компактный силовой блок и гидропневматическую подвеску, а применение облегчённых гусеничных траков из резины может серьёзно снизить уровень шума.

Несмотря на положительные результаты, прототип ACAVP оказался невостребованным, хотя руководство DERA и планировало продолжить исследования до 2005 года, а впоследствии создать перспективную БРМ с композитной бронёй и экипажем из двух человек. В конечном счёте программа была свёрнута, а дальнейшее проектирование перспективной разведывательной машины уже велось по проекту TRACER с использованием проверенных алюминиевых сплавов и стали.

Тем не менее, работы по исследованию неметаллических броневых материалов для техники и индивидуальной защиты были продолжены. В некоторых странах появились собственные аналоги материала «Кевлар», такие как «Тварон» датской компании Teijin Aramid. Он представляет собой очень прочное и лёгкое параарамидное волокно, которое предполагается использовать в бронировании боевой техники и, по заявлению производителя, может снизить общую массу конструкции на 30-60% по сравнению с традиционными аналогами. Еще один материал, получивший название «Дайнема», производства компании DSM Dyneema является высокопрочным сверхвысокомолекулярным полиэтиленовым (СВМПЭ) волокном. Как утверждает изготовитель, СВМПЭ является самым прочным материалом в мире — в 15 раз прочнее стали (!) и на 40% прочнее арамидного волокна такой же массы. Его планируется использовать для производства бронежилетов, касок и в качестве бронирования лёгких боевых машин.

Легкие бронемашины из пластика

Учитывая накопленный опыт, зарубежными специалистами был сделан вывод, что разработка перспективных танков и бронетранспортёров, полностью оснащённых бронёй из пластика, всё же является довольно спорным и рискованным делом. Но новые материалы оказались востребованными при разработке более лёгкой колёсной техники на базе серийных автомобилей. Так, с декабря 2008 г. по май 2009 г. в США на полигоне в Неваде был испытан легкий бронеавтомобиль с корпусом, полностью состоящим из композиционных материалов. Машина, получившая обозначение ACMV (All Composite Military Vehicle), разработанная компанией TPI Composites, успешно прошла ресурсные и ходовые испытания, проехав в общей сложности 8 тысяч километров по асфальтовым и грунтовым дорогам, а также по пересечённой местности. Были запланированы испытания обстрелом и подрывом. Базой опытного бронеавтомобиля послужил известный HMMWV — «Хаммер». При создании всех конструкций его корпуса (в т.ч. балки рамы) использовались только композиционные материалы. За счёт этого компании TPI Composites удалось значительно снизить массу ACMV и, соответственно, увеличить его грузоподъёмность. В дополнение планируется на порядок продлить срок службы машины ввиду ожидаемой большей долговечности композитов по сравнению с металлом.

Значительного прогресса в области использования композитов для легкой бронетехники достигли в Великобритании. В 2007 году на 3-й международной выставке оборонных систем и оборудования в Лондоне был продемонстрирован бронеавтомобиль Cav-Cat на базе среднетоннажного грузовика Iveco, оснащённый композитной бронёй CAMAC компании NP Aerospace. Помимо штатной брони была предусмотрена дополнительная защита бортов машины за счёт установки модульных бронепанелей и противокумулятивных решёток, также состоящих из композита. Комплексный подход в защите CavCat позволил значительно снизить воздействие на экипаж и десант взрывов мин, осколков и лёгкого пехотного противотанкового оружия.

Американский опытный бронеавтомобиль ACMV с корпусом из стеклопластика

Британская бронированая машина CfvCat с дополнительными противокомулятивными экранами

Стоит отметить, что ранее компания NP Aerospace уже демонстрировала броню типа САМАС на лёгком бронеавтомобиле Landrover Snatch в составе бронекомплекта Cav100. Теперь же подобные комплекты Cav200 и Cav300 предлагаются для средних и тяжёлых колёсных машин. Изначально новый бронематериал создавался как альтернативная металлической композитная пуленепробиваемая броня с высоким классом защиты и общей прочностью конструкции при сравнительно низком весе. В его основу был положен прессованный многослойный композит, позволяющий формировать прочную поверхность и создавать корпус с минимумом стыков. По утверждению производителя, бронематериал CAMAC обеспечивает создание модульной конструкции типа «монокок» с оптимальной баллистической защитой и способностью противостоять сильным структурным нагрузкам.

Но компания NP Aerospace пошла дальше и в настоящее время предлагает оснащать лёгкие боевые машины новой динамической и баллистической композитной защитой собственного производства, расширив свой вариант комплекса защиты путём создания навесных элементов EFPA и ACBA. Первый представляет собой начинённые взрывчатым веществом пластиковые блоки, устанавливаемые поверх основной брони, а второй — литые блоки композитной брони, также дополнительно устанавливаемые на корпус.

Таким образом, легкие колёсные боевые бронированные машины с композитной бронезащитой, разрабатываемые для армии, уже не выглядели чем-то из ряда вон выходящим. Символической вехой стала победа промышленной группы Force Protection Europe Ltd в сентябре 2010 года в тендере на поставку в вооружённые силы Великобритании лёгкой бронированной патрульной машины LPPV (Light Protected Patrol Vehicle), получившей название Ocelot. Британское министерство обороны приняло решение заменить устаревшие армейские автомобили Land Rover Snatch как не оправдавшие себя в современных боевых условиях на территории Афганистана и Ирака, на перспективную машину с бронированием из неметаллических материалов. В качестве партнёров Force Protection Europe, имеющей большой опыт в производстве высокозащищенных автомобилей типа MRAP, была выбрана автостроительная компания Ricardo plc и «КинетиК», занимающаяся бронированием.

Разработка Ocelot велась с конца 2008 года. Проектировщики бронеавтомобиля решили создать принципиально новую машину на основе оригинального конструкторского решения в виде универсальной модульной платформы, в отличие от других образцов, которые базируются на серийных коммерческих шасси. Помимо V-образной формы днища корпуса, повышающей защиту от мин за счёт рассеивания энергии взрыва, была разработана специальная подвесная бронированная коробчатая рама под названием «скейтборд», внутри которой были размещены карданный вал, коробка передач и дифференциалы. Новое техническое решение позволило перераспределить вес машины таким образом, чтобы центр тяжести находился максимально близко к земле. Подвеска колёс — торсионная с большим вертикальным ходом, приводы на все четыре колеса — раздельные, узлы передней и задней осей, а также колёса — взаимозаменяемые. Навесная кабина, в которой располагается экипаж, крепится к «скейтборду» шарнирно, что позволяет откидывать кабину в сторону для доступа к трансмиссии. Внутри находятся сиденья для двух членов экипажа и четырёх человек десанта. Последние сидят лицом друг к другу, их места отгорожены перегородками-пилонами, дополнительно усиливающими конструкцию корпуса. Для доступа внутрь кабины имеются двери с левой стороны и в задней части, а также два люка в крыше. Предусмотрено дополнительное пространство для монтажа различного оборудования, в зависимости от целевого назначения машины. Для электропитания приборов установлена вспомогательная дизельная силовая установка Steyr.

Первый прототип машины Ocelot был изготовлен в 2009 году. Её масса составила 7,5 тонн, масса полезной нагрузки — 2 тонны, максимальная скорость движения по шоссе — 110 км/ч, запас хода — 600 км, радиус разворота — около 12 м. Преодолеваемые препятствия: -подъём до 45°, спуск до 40°, глубина брода до 0,8 м. Низкое расположение центра тяжести и широкая база между колёсами обеспечивает устойчивость к опрокидыванию. Проходимость повышена за счет использования увеличенных 20-дюймовых колёс. Большая часть подвесной кабины состоит из бронированных фигурных композитных бронепанелей, армированных стекловолокном. Имеются крепления для дополнительного комплекта бронезащиты. В конструкции предусмотрены обрезиненные участки для монтажа агрегатов, что позволяет снизить уровень шума, вибрации и повысить прочность изоляции по сравнению с обычным шасси. По заявлению разработчиков, базовая конструкция обеспечивает защиту экипажа от взрывов и огнестрельного оружия выше уровня стандарта STANAG IIB. Также утверждается, что полная замена двигателя и коробки передач может быть выполнена в полевых условиях в течение одного часа с помощью только штатных инструментов.

Первые поставки бронеавтомобилей Ocelot начались в конце 2011 года, а к исходу 2012 года в вооружённые силы Великобритании поступило около 200 таких машин. Компания Force Protection Europe в дополнение к базовой патрульной модели LPPV разработала также варианты с модулем вооружения WMIK (Weapon Mounted Installation Kit) с экипажем из четырёх человек и грузовой вариант с кабиной на 2 человека. В настоящее время она принимает участие в тендере министерства обороны Австралии на поставку бронированных машин.

Итак, создание новых неметаллических броневых материалов в последние годы идёт полным ходом. Возможно, не за горами то время, когда принятые на вооружение бронированные машины, не имеющие в своём корпусе ни одной металлической детали, станут обыденным делом. Особенную актуальность лёгкая, но прочная бронезащита приобретает сейчас, когда в разных уголках планеты вспыхивают вооружённые конфликты низкой интенсивности, проводятся многочисленные антитеррористические и миротворческие операции.

Изобретение относится к области разработки средств защиты техники от бронебойных пуль.

Прогресс в создании высокоэффективных поражающих средств и определяемое им повышение требований к бронезащите обусловило создание многослойной комбинированной брони. Идеология комбинированной защиты заключается в сочетании нескольких слоев разнородных материалов с приоритетными свойствами, включающем фронтальный слой из особотвердых материалов и высокопрочный энергоемкий тыльный слой. В качестве материалов фронтального слоя используют керамику высшей категории твердости, при этом задача ее сводится к разрушению закаленного сердечника, вследствие напряжений, возникающих при их высокоскоростном взаимодействии. Тыльный удерживающий слой предназначен для погашения кинетической энергии и блокировки осколков, образующихся в результате ударного взаимодействия пули с керамикой.

Известны технические решения, предназначенные для защиты поверхностей, имеющих сложный геометрический рельеф, - патенты США №5972819 А, 26.10.1999; №6112635 А, 05.09.2000, №6203908 В1, 20.03.2001; патент РФ №2329455, 20.07.2008. Общим в этих решениях является использование в фронтальном высокотвердом слое малоразмерных керамических элементов, как правило, в виде тел вращения, наибольшее распространение среди которых получили элементы в виде цилиндров. При этом эффективность работы керамики повышают за счет использования выпуклых покатых торцов с одной или обеих сторон цилиндров. В этом случае при встрече поражающего средства с овальными поверхностями керамики действует механизм увода или сбивания пули с траектории полета, существенно затрудняющий работу по преодолению керамической преграды. Кроме того, использование в этом случае малоразмерной керамики обеспечивается более высокий по сравнению с плиточным вариантом уровень живучести за счет существенного уменьшения зоны поражения и весьма важная для практики частичная локальная ремонтопригодность конструкций.

Вместе с тем высокая эффективность работы многослойной брони определяется не только свойствами материалов основных слоев, но и условиями их взаимодействия при высокоскоростном ударе, в частности акустическим контактом керамического и тыльного слоев, обеспечивающим возможность частичной передачи упругой энергии в тыльную подложку.

Современные представления о механизме ударного взаимодействия бронебойного сердечника и комбинированной защиты состоят в следующем. На первоначальном этапе при встрече сердечника с броней внедрения его в керамику не происходит ввиду того, что последняя обладает существенно большей твердостью по сравнению с таковой у сердечника, далее происходит разрушение сердечника за счет генерирования в нем высоких напряжений, возникающих при торможении о керамическую преграду, и определяется сложными волновыми процессами, происходящими при этом. Степень разрушения сердечника в основном определяется временем взаимодействия до момента разрушения керамики, при этом акустический контакт между слоями играет ключевую роль в увеличении этого времени за счет частичной передачи упругой энергии в тыловой слой с последующим поглощением и рассеиванием ее.

Известно техническое решение, изложенное в патенте США №6497966 В2, 24.12.2002, где предложена многослойная композиция, состоящая из лицевого слоя, выполненного из керамики или сплава с твердостью выше 27 HRC, промежуточного слоя из сплавов с твердостью менее 27HRC и тыльного слоя из полимерного композиционного материала. При этом все слои скреплены между собой полимерным намоточным материалом.

По сути дела, в этом случае речь идет о двухслойной композиции разрушающего фронтального слоя, изготовленной из материалов, отличающихся по твердости. В рекомендациях авторов этого технического решения предлагается в менее твердом слое использовать углеродистые стали, при этом вопросы об энергетическом обмене фронтального и тыльного слоев не рассматриваются, а предложенный класс материалов не может по своим свойствам служить активным участником переноса упругой энергии в тыловой слой.

Решение вопросов взаимодействия фронтального и тыловых слоев предложено в патенте РФ №2329455, 20.07.2008, который по совокупности общих признаков является наиболее близким аналогом к предлагаемому изобретению и выбран в качестве прототипа. Авторы предлагают использование промежуточного слоя в виде воздушного зазора или упругого материала.

Однако предложенные решения обладают рядом существенных недостатков. Так, на начальном этапе взаимодействия с керамикой упругий волновой предвестник разрушения достигает тыльной поверхности ее и вызывает ее перемещение.

При схлопывании зазора удар внутренней поверхности керамики о подложку может вызывать досрочное разрушение керамики и, следовательно, ускоренное пробитие керамической преграды. Чтобы избежать этого, необходимо или существенно увеличивать толщину керамики, что приведет к неприемлемому увеличению массы брони, или увеличивать толщину зазора, что снизит эффективность защиты из-за раздельного (поэтапного) разрушения отдельных слоев.

Во втором варианте авторы прототипа предлагают поместить между слоями упругую прослойку, которая должна предохранить керамику от разрушения при ударе о тыльную броню. Однако из-за низкого характеристического импеданса упругого материала прослойка не сможет обеспечить акустического контакта слоев, что приведет к локализации энергии в хрупкой керамике и ее досрочному разрушению.

Задачей, на решение которой направлено изобретение, является повышение бронестойкости комбинированной брони.

Техническим результатом изобретения является повышение бронестойкости комбинированной брони за счет увеличения плотности акустического контакта между слоями.

Недостатки прототипа можно устранить, если промежуточный слой будет выполнен из пластичного материала с определенными свойствами, обеспечивающего акустический контакт слоев и передачу упругой энергии в тыл. Вышеуказанное достигается если предел текучести промежуточного слоя составляет 0,05-0,5 от предела текучести материала тыльного слоя.

При наличии промежуточного слоя, выполненного из пластичного материала с пределом текучести 0,05-0,5 от предела текучести материала тыльного слоя, в процессе перемещения керамики под действием упругого волнового предвестника происходит устранение неплотностей и мелких зазоров в прилегающих слоях благодаря пластической деформации последнего. Кроме того, под действием волн напряжений возрастает его плотность, а следовательно, его характеристический импеданс. Все это в совокупности приводит к увеличению плотности акустического контакта между слоями и повышает долю энергии, передаваемой и рассеиваемой в тыльном слое. В результате, за счет наличия промежуточного слоя, выполненного из пластичного материала с пределом текучести 0,05-0,5 от предела текучести материала тыльного слоя, энергия ударного взаимодействия распределяется по всем слоям комбинированной брони, при этом эффективность ее работы существенно возрастает, так как время взаимодействия до разрушения керамики повышается, что, в свою очередь, обеспечивает более полное разрушение высокотвердого сердечника.

Промежуточный слой с пределом текучести более 0,5 предела текучести тыльного слоя не обладает достаточной пластичностью и не приводит к желаемому результату.

Выполнение промежуточного слоя из пластичного материала с пределом текучести менее 0,05 от значения предела текучести материала тыльного слоя не приведет к желаемому результату, так как его выдавливание в процессе ударного взаимодействия происходит слишком интенсивно и описанное выше влияние на механику процессов взаимодействия не оказывается.

Предложенное техническое решение было опробовано в условиях испытательного центра НПО СМ г. Санкт-Петербург. Керамический слой в опытном образце 200×200 мм был изготовлен из корундовых цилиндров марки AJI-1 диаметром 14 мм и высотой 9,5 мм. Тыльный слой изготовили из броневой стали марки Ц-85 (предел текучести = 1600 МПа) толщиной 3 мм. Промежуточный слой изготовили из алюминиевой фольги марки АМЦ (предел текучести=120 МПа) толщиной 0,5 мм. Соотношение пределов текучести промежуточного и тыльного слоев составляет 0,075. Керамические цилиндры и все слои были склеены между собой полимерным связующим на основе полиуретана.

Результаты натурных испытаний показали, что предложенный вариант комбинированной бронезащиты имеет бронестойкость на 10-12% выше по сравнению с прототипом, где промежуточный слой выполнен из упругого материала.

Многослойная комбинированная броня, содержащая высокотвердый фронтальный слой из керамического блока или элементов, соединенных связующим в монолит, высокопрочный энергоемкий тыльный слой и промежуточный слой, отличающаяся тем, что промежуточный слой выполнен из пластичного материала, имеющего предел текучести 0,05-0,5 от предела текучести тыльного слоя.

Похожие патенты:

Изобретение относится к системам реактивной защиты для защиты неподвижных и движущихся объектов от поражающих элементов. Система неподвижно или подвижно установлена или может устанавливаться на обращенной к поражающему элементу (3) стороне подлежащего защите объекта (1) и содержит по меньшей мере одну расположенную под некоторым углом (2) наклона относительно направления поражающего элемента защитную поверхность (4).

Изобретение относится к прокатному производству и может быть использовано при изготовлении броневых листов из (α+β)-титанового сплава. Способ изготовления броневых листов из (α+β)-титанового сплава включает подготовку шихты, выплавку слитка состава, мас.%: 3,0-6,0 Al; 2,8-4,5 V; 1,0-2,2 Fe; 0,3-0,7 Mo; 0,2-0,6 Cr; 0,12-0,3 О; 0,010-0,045 С; <0,05 N; <0,05 Н;<0,15 Si; <0,8 Ni; остальное - титан.

Группа изобретений относится к области транспортного машиностроения. Способ установки стекол при бронировании автомобиля по первому варианту заключается в том, что бронированные стекла устанавливаются за штатными при помощи рамки, соединяемой с заходной частью стекла и повторяющей форму стекла, и крепежных элементов.

Изобретение относится к бронированным объектам, преимущественно к электрифицированным танкам с динамической (реактивной) броневой защитой. Бронированный объект содержит защитное устройство динамического типа, которое включает в себя элементы с корпусом и крышкой, установленные на части площади внешней поверхности объекта.

Группа изобретений относится к производству многослойных гибких броневых материалов для средств индивидуальной защиты. Способ противодействия многослойной брони движению пули, осколка заключается в том, что чередуют слои высокомодульных волокон с веществами, усиливающими противодействие, которые размещают в ячейках, образованных слоями высокомодульных волокон.

Изобретение относится к оборонной технике и предназначено для проведения испытаний лицевых металлических преград - основы гетерогенных защитных структур. Способ включает выстреливание бойков со скоростью, большей скорости удара, определение и замер глубины ударного внедрения бойка диаметром d в поверхность металла h (глубина каверны). При этом скорость удара больше или меньше ожидаемой минимальной скорости сплошных пробитий. Определение предельной (минимальной) скорости сплошных пробитий, выше которой получаются сплошные пробития, а ниже - только закономерные пробития, на фоне линейной зависимости малых значений глубины каверны h от скорости удара; преимущества квантованных скоростей удара; однозначных и малых двузначных квантовых чисел n для всех скоростей, на которых получены пробития или каверны увеличенной глубины. Достигается определение наличия и преимущества квантованных скоростей удара, а также повышение точности определения минимальной скорости сплошных пробитий. 4 ил.

Изобретение относится к военной технике, в частности к конструкции броневой защиты, предназначенной для противодействия кумулятивным боеприпасам. Динамическая защита содержит корпус, в котором расположены две параллельные металлические пластины, детонаторы, равномерно расположенные в зазоре между металлическими пластинами, датчики определения координат проникающей кумулятивной струи, закрепленные на внутренних поверхностях пластин. В зазоре между металлическими пластинами расположены сосуды, заполненные жидкостью, внутри сосудов жестко закреплены детонаторы, выполненные в виде управляемых электрических разрядников, силовые электроды которых соединены проводами с выходом электрического накопителя энергии, а поджигающие электроды электрически соединены с выходом генератора поджигающих импульсов, вход которого электрически соединен с датчиками определения координат кумулятивной струи. Достигается повышение надежности работы динамической защиты. 1 ил.

Изобретение относится к средствам защиты техники и экипажа от пуль, осколков и гранатометных гранат. Защитный композитный материал содержит сэндвич, включающий в себя по меньшей мере три слоя, склеенных между собой. Первый и второй слои сэндвича включают в себя по меньшей мере два препрега и уголки титанового сплава или алюминиевого сплава. Третий слой защитного композита имеет сотовую конструкцию и изготавливается из полиуретана. Первый и второй слои сэндвича включают в себя монолиты, образованные из углового профиля. Полки углового профиля расположены под углом 45° к плоскости рабочей поверхности защитного композита. Уголки титанового сплава или алюминиевого сплава соединены между собой по меньшей мере двумя препрегами. Волокна препрега содержат корундовые нанотрубки на поверхности волокна из полиэтиленовой нити, или из стеклонити, или из базальтовой нити, или из ткани, или жгута, или ленты. Достигается повышение защитных свойств за счет конструкции брони. 3 з.п. ф-лы, 1 ил.

Изобретение относится к бронированным объектам, главным образом к танкам с динамической броневой защитой, и одновременно к средствам маскировки военных объектов с помощью маскировочного покрытия, закрепленного на поверхности объекта. Защитное устройство бронированного военного объекта содержит съемно закрепляемые на участках брони объекта маскировочные квадратные элементы-модули с камуфляжным рисунком в цветовом ассортименте и с выбором той или иной индивидуальной четырехпозиционной ориентацией. В устройстве предусмотрены распределенные по поверхности объекта элементы динамической защиты со съемными квадратными крышками, а маскировочные элементы-модули выполнены в виде жестких пластин, взаимозаменяемых с упомянутыми крышками элементов динамической защиты, с возможностью оперативного изменения камуфляжного рисунка путем замены и/или перестановки двухфункциональных, таким образом, элементов-модулей между элементами динамической защиты. Достигается оперативность замены средств маскировки путем частного применения принципа многофункциональности узлов и деталей машин к элементам динамической защиты и средств маскировки. 5 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества композитных броневых преград. Заявлено устройство теплового контроля качества композитных броневых преград на основе анализа энергии поглощения поражающего элемента, включающее устройство для стрельбы, расположенное между подложкой и устройством для стрельбы на траектории полета поражающего элемента устройство для измерения скорости полета поражающего элемента на выходе устройства для стрельбы, подложку из пластичного материала. Устройство дополнительно снабжено тепловизионной системой, компьютерной системой и устройством регистрации начала полета поражающего элемента. Тепловизионная система расположена таким образом, чтобы поле обзора ее оптической части охватывало место соприкосновения поражающего элемента и композитной броневой преграды. Вход устройства регистрации начала полета поражающего элемента подключен к выходу устройства измерения скорости поражающего элемента на выходе устройства для стрельбы. Выход устройства регистрации начала полета поражающего элемента подключен к входу тепловизионной системы, а выход тепловизионной системы подключен к входу компьютерной системы. Технический результат - повышение информативности и достоверности результатов испытаний. 9 ил.

Изобретение относится к области транспортного машиностроения. Энергопоглощающая структура для защиты днища наземных транспортных средств состоит из внутреннего и наружного слоев защиты, выполненных из броневых и/или конструкционных сплавов. Между слоями защиты расположена прослойка. Прослойка выполнена в виде двух одинаковых рядов U- или W-образных энергопоглощающих профилей, зеркально обращенных друг к другу и сдвинутых на полшага относительно друг друга. Торцевые ребра энергопоглощающих профилей одного ряда опираются на торцевые ребра соседних энергопоглощающих профилей противоположного ряда. Достигается повышение эффективности энергопоглощения при подрыве. 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества композитных броневых преград. Способ включает установку броневой преграды перед пластиной из пластичного материала, направление с заданной скоростью поражающего элемента на броневую преграду. Дополнительно регистрируют температурное поле поверхности композитной броневой преграды, имеющей минимальные температурные аномалии, которое принимается за аномальное, определяют пространственное разрешение для регистрации температурного поля, исходя из обнаружения минимальных по размеру температурных аномалий с пространственным периодом, определяемым размерами минимальной температурной аномалии. После воздействия на композитную броневую преграду поражающим элементом с заданной скоростью одновременно измеряют температурное поле в области соприкосновения поражающего элемента с композитной броневой преградой, начиная с момента соприкосновения поражающего элемента с композитной броневой преградой и с противоположной стороны, по отношению к стороне соприкосновения с поражающим элементом, на основании анализа температурного поля, зарегистрированного с двух поверхностей, определяют техническое состояние композитной броневой преграды по вектору характеристик броневой преграды и ее энергию поглощения минимизацией функционала по вектору характеристик контролируемой броневой пластины путем решения системы уравнений и на основании анализа температурного поля определяют энергию поглощения композитной броневой преградой. Раскрыто устройство стендовых испытаний композитных броневых преград. Технический результат - повышение информативности и достоверности результатов испытаний. 2 н. и 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к стойкому к проникновению изделию, которое может использоваться для производства защитной одежды, такой как бронежилеты, шлемы, а также щитов или элементов брони, а также к способу его производства. Изделие содержит по меньшей мере одну тканую тканевую структуру (3), имеющую термопластические волокна и высокопрочные волокна с прочностью по меньшей мере 1100 МПа, в соответствии со стандартом ASTM D-885. Высокопрочные волокна соединены вместе для формирования тканой ткани (2) тканой тканевой структуры (3), а термопластические волокна имеют массовый процент относительно массы тканой тканевой структуры (3), составляющий от 5 до 35%. Причем термопластические волокна предпочтительно в виде негофрированной ткани (6) лежат на тканой ткани (2) и соединены с тканой тканью (2) основной нитью и/или уточной нитью тканой ткани (2) из высокопрочных волокон. При этом отсутствуют какие-либо дополнительные соединительные нити или нетекстильные соединительные средства для соединения между тканой тканью (2) и термопластическими волокнами. Стойкое к проникновению изделие обладает свойствами защиты от удара и/или антибаллистическими свойствами. 3 н. и 11 з.п. ф-лы, 7 ил.

Изобретение относится к пуленепробиваемым композитным изделиям, характеризующимся улучшенным сопротивлением к изнаночной деформации. Пуленепробиваемое изделие содержит вакуумную панель, которая состоит из первой поверхности, второй поверхности и корпуса. Вакуумная панель ограничивает по меньшей мере часть внутреннего объема, в котором создают разрежение. Пуленепробиваемое изделие содержит по меньшей мере одно пуленепробиваемое основание, которое соединяют с первой или второй поверхностью вакуумной панели. Пуленепробиваемое основание содержит волокна и/или ленты с удельной прочностью приблизительно 7 г/денье или более и модулем упругости при растяжении приблизительно 150 г/денье или более. Также пуленепробиваемое основание изготавливают из жесткого материала не на основе волокон или лент. Предлагается также способ формирования пуленепробиваемого изделия, при котором пуленепробиваемое основание располагают так, чтобы оно находилось с внешней стороны пуленепробиваемого изделия, а указанную вакуумную панель располагают позади указанного по меньшей мере одного пуленепробиваемого основания для того, чтобы принять любую ударную волну, которая возникает в результате удара поражающего элемента об указанное пуленепробиваемое основание. Обеспечивается ослабление воздействия ударных волн, генерируемых в результате ударного воздействия поражающего элемента, снижение величины изнаночной деформации, предотвращение или минимизация травм от запредельного действия пуль. 3 н. и 7 з.п. ф-лы, 9 ил., 2 табл., 19 пр.

Группа изобретений относится к области измерительной техники, а именно к способу контроля качества композитных броневых преград из ткани и устройству для его осуществления. Способ включает установку композитной броневой преграды перед пластиной из пластичного материала, направление с заданной скоростью поражающего элемента на броневую преграду и определение энергии поглощения поражающего элемента. С момента взаимодействия броневой преграды и поражающего элемента регистрируют одновременно два пространственных поля на поверхности броневой преграды: температурное поле поверхности броневой преграды и поле видеоизображения поверхности. Накладывают контур видеоизображения на температурное поле, формируют новое измеренное температурное поле, а энергию поглощения композитной броневой преградой определяют на основе анализа нового температурного поля. Раскрыто устройство контроля качества композитных броневых преград из ткани для осуществления способа. Достигается повышение информативности и достоверности результатов контроля. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к области разработки средств защиты техники от бронебойных пуль. Многослойная комбинированная броня содержит высокотвердый фронтальный слой из керамического блока или элементов, соединенных связующим в монолит, высокопрочный энергоемкий тыльный слой и промежуточный слой. Промежуточный слой выполнен из пластичного материала, имеющего предел текучести 0,05-0,5 от предела текучести тыльного слоя. Достигается повышение бронестойкости комбинированной брони за счет увеличения плотности акустического контакта между слоями.

Бронирование современных отечественных танков

А. Тарасенко

Многослойная комбинированная броня

В 50-е годы стало ясно, что дальнейшее повышение защищенности танков не возможно только за счет повышения характеристик броневых стальных сплавов. Особенно это касалось защиты от кумулятивных боеприпасов. Идея использования малоплотные наполнители для защиты от кумулятивных боеприпасов возникло еще во времена Великой Отечественной войны, пробивное действие кумулятивной струи сравнительно невелико в грунтах, особенно это справедливо для песка. Поэтому можно стальную броню заменить слоем песка, зажатого между двумя тонкими листами железа.

В 1957 г. во ВНИИ-100 была проведена НИР по оценке противо-кумулятивной стойкости всех отечественных танков, как серийного производства, так и опытных образцов. Оценка защиты танков проводилась исходя из расчета их обстрела отечественным невращающимся кумулятивным 85-мм снарядом (по своей бронепробиваемости он превосхо-дил зару-бежные кумулятивным снаряды калибра 90 мм) под различными курсовыми углами, предусматривавшими-ся действовавшими в то время ТТТ. Результаты этой НИР легли в основу разработки ТТТ по защите танков от кумулятивных средств поражения. Выполненные в НИР расчеты показали, что наиболее мощной броневой защитой обладал опытный тяжелый танк «Объект 279» и средний танк «Объект 907».


Их защита обеспечивала непробитие кумулятивным 85-мм снарядом со стальной воронкой в пределах курсовых углов: по корпусу ±60", башне - + 90". Для обеспечения защиты от снаряда данного типа остальных танков требовалось утолщение брони, которое приводило к значительному увеличе-нию их боевой массы: Т-55 на 7700 кг, «Объект 430» на 3680 кг, Т-10 на 8300 кг и «Объект 770» на 3500 кг.

Увеличение толщины брони для обеспечения противокумулятив-ной стойкости танков и соответственно их массы на указанные выше величины были неприемлемы. Решение проблемы по уменьшению массы брони специалисты филиала ВНИИ-100 видели в использовании в соста-ве брони стеклопластика и легких сплавов на основе алюминия и титана, а также их комбинации со стальной броней.

В составе комбинированной брони алюминиевые и титановые сплавы впервые были использованы в конструкции броневой защи-ты танковой башни, в которой специально предусмотренная внут-ренняя полость заполнялась алюминиевым сплавом. С этой целью был разработан специальный алюминиевый литейный сплав АБК11, не подвергаемый после литья термической обработке (из-за невоз-можности обеспечения критической скорости охлаждения при за-калке алюминиевого сплава в комбинированной системе со сталью). Вариант «сталь + алюминий» обеспечивал при равной противокуму-лятивной стойкости уменьшение массы брони в два раза по сравне-нию с обычной стальной.


В 1959 г. для танка Т-55 были спроектированы носовая часть корпуса и башня с двухслойной броневой защитой «сталь+алюминиевый сплав». Однако в процессе испытаний таких комбини-рованных преград выяснилось, что двухслойная броня не облада-ла достаточной живучестью при многократных попаданиях броне-бойно-подкалиберных снарядов - утрачивалась взаимная опора слоев. Поэтому в дальнейшем были проведены испытания трех-слойных броневых преград «сталь+алюминий+сталь», «титан+алюминий+титан». Выигрыш по массе несколько сократился, но все равно оставался достаточно значительным: комбинированная бро-ня «титан+алюминий+титан» по сравнению с монолитной сталь-ной броней при одинаковом уровне броневой защиты при обстреле 115-мм кумулятивными и подкалиберными снарядами обеспечива-ла сокращение массы на 40%, сочетание «сталь+алюминий+сталь» давало 33% экономии массы.

Т-64

В техническом проекте (апрель 1961 г) танка «изделие 432» изначально рассматривались два варианта наполнителя:

· Стальная броневая отливка с ультрафорфоровыми вставками с исходной базовой толщиной по горизонтали равной 420 мм с эквивалентной противокумулятивной защитой равной 450 мм;

· литая башня, состоящая из сталь-ной броневой основы, алюминиевой противокумулятивной рубашки (заливаемой после отливки стального корпуса) и наружной стальной бронировки и алюминия. Суммарная максимальная толщина стенок этой башни равна ~500 мм и эквивалентна противокумулятивной защите в ~460 мм.


Оба варианта башен давали более чем одну тонну экономии веса по сравнению с цельностальной башней равной стойкости. На серийные танки Т-64 устанавливалась башня с алюминиевым наполнителем.

Оба варианта башен давали более чем одну тонну экономии веса по сравнению с цельностальной башней равной стойкости. На серийные танки «изделие 432» устанавливалась башня с алюминиевым наполнителем. В ходе накопления опыта выявился ряд недостатков башни, в первую очередь связанные с ее большими габаритами толщин лобового бронирования. В дальнейшем в конструкции бронезащиты башни на танке Т-64А в период 1967-1970 года применялись стальные вставки, после которых окончательно пришли к рассматриваемому изначально варианту башни с ультрафорфоровыми вставками (шарами), обеспечивающую заданную стойкость при меньшем габарите. В 1961-1962 гг. основные работы по созданию комбинирован-ной брони развернулись на Ждановском (Мариупольском) метал-лургическом заводе, на котором происходила отладка технологии двухслойных отливок, проводились обстрелы различных вариантов броневых преград. Были отлиты и прошли испытания 85-мм кумуля-тивными и 100-мм бронебойными снарядами образцы («сектора»)

комбинированной брони «сталь+алюминий+сталь». Для устранения «выдавли-вания» алюминиевых вставок из тела башни необходимо было использование специ-альных перемычек, препятствовавших «выдавливанию» алюминия из полостей стальной башни.Танк Т-64 стал первым в мире серийным танком, имеющим принципиально новую защиту, адекватную новым средствам поражения. До появления танка «Объект 432» все бронированные машины име-ли монолитную или состав-ную броню.


Фрагмент чертежа башни танка объект 434 с указанием толщин стальных преград и наполнителя

Подробнее про броневую защиту Т-64 в материале -


Применение алюминиевого сплава АБК11 в конструкции броневой защиты верхней лобовой части корпуса (А) и передней части башни (Б)

опытного среднего танка «Объект 432». Броневая конструкция обеспечивала защиту от воздействия кумулятивного боеприпаса.

Верхний лобовой лист корпуса «изделия 432» установлен под углом 68 ° к вертикали, комбинированный, общей толщиной 220 мм. Он состоит из наружного броневого листа толщи-ной 80 мм и внутреннего листа стеклопластика толщиной 140 мм. В результате расчетная стойкость от кумулятивных боеприпасов составляла 450 мм. Передняя крыша корпуса выполнена из брони толщиной 45 мм и имела отвороты - «скулы» расположенные под углом 78 ° 30 к вертикали. Применение стеклопластика выбранной толщины, обеспечило и надежную (с превышением ТТТ) противорадиационную защиту. Отсутствие в техническом проекте тыльной плиты после слоя стеклопластика показывает сложный поиск правильных технических решений создания оптимальной трехпреградной преграды, которые сложились позднее.

В дальнейшем от такой конструкции отказались в пользу более простой конструкции без «скул», обладавшей большей стойкостью от кумулятивных боеприпасов. Применение комбинированной брони на танке Т-64А для верхней лобовой детали (80 мм стали+ 105 мм стеклопластика + 20 мм стали) и башни со стальными вставками (1967-1970), а в дальнейшем с наполнителем из керамических шаров (горизон-тальная толщина 450 мм) позволило обеспечить защиту от БПС (с бронепробиваемостью 120 мм/60° с дальности 2 км) на дальности 0,5 км и от КС (пробивающих 450 мм) при увеличении массы брони на 2 т по сравнению с танком Т-62.

Схема технологического процесса отливки башни «объекта 432» с полостями под алюминиевый наполнитель. При обстреле башня с ком-бинированной броней обеспечивала полную защиту от 85-мм и 100-мм кумулятивных снарядов, 100-мм бронебойных тупоголовых снарядов и 115-мм подкапиберных снарядов при курсовых углах обстре-ла ±40°, а также защиту от 115-мм кумулятивного снаряда при курсовом угле обстрела ±35°.


В качестве наполнителей испытывались высокопрочный бетон, стекло, диабаз, керамика (фарфор, ультрафарфор, уралит) и раз-личные стеклопластики. Из испытанных материалов лучшими характеристиками обладали вкладыши из высокопрочного ультрафарфора (удельная струегасящая способность в 2—2,5 раза выше, чем у броневой стали) и стеклопластик АГ-4С. Эти материалы и были ре-комендованы для применения в качестве наполнителей в составе комбинированных броневых преград. Выигрыш по массе при ис-пользовании комбинированных броневых преград по сравнению с монолитными стальными составлял 20-25%.

Т-64А

В процессе совершенствования комбинированной защиты от башни с применением алюминиевого наполнителя отказались. Одновремен-но с отработкой конструкции башни с наполни-телем из ультрафарфора в филиале ВНИИ-100 по предложению В.В. Иерусалимского была раз-работана конструкция башни с применением вы-сокотвердых вставок из стали, предназначавших-ся для изготовления снарядов. Эти вставки, под-вергнутые термической обработке по методу дифференциальной изотермической закалки, имели особо твердую сердцевину и относитель-но менее твердые, но более пластичные наруж-ные поверхностные слои. Изготовленная опыт-ная башня с высокотвердыми вставками пока-зала при обстреле даже лучшие результаты по стойкости, чем с залитыми керамическими ша-рами.

Недостатком башни с высокотвердыми вставками являлась недостаточная живучесть сварного соединения между подпорным листом и опорой башни, которое при ударе бронебойно-подкалиберного снаряда разрушалось без пробития.

В процессе изготовления опытной партии ба-шен с высокотвердыми вставками, оказалось, не-возможно обеспечить минимально необходимую ударную вязкость (высокотвердые вставки из-готовленной партии при снарядном обстреле дали повышенное хрупкое разрушение и проби-тие). От дальнейших работ в этом направлении отказались.


(1967-1970 гг)

В 1975 году на вооружение была принята башня с корундовым наполнителем разработанная ВНИИТМ (в производстве с 1970 г). Бронирование башни - 115 сталь литая броневая, 140 мм ультрафарфоровые шары и тыльная стенка 135 мм стали угол наклона 30 градусов. Технология отливки башен с керамическим наполнителем была отрабо-тана в результате совместной работы ВНИИ-100, харьковского завода №75, Южно-Уральского за-вода радиокерамики, ВПТИ-12 и НИИБТ. С использовани-ем опыта работы над комби-нированной броней корпуса этого танка в 1961-1964 гг. конструкторскими бюро заво-дов ЛКЗ и ЧТЗ совместно с ВНИИ-100 и его московским филиалом были разработаны варианты корпусов с комби-нированной броней для тан-ков с управляемым ракетным вооружением: «Объект 287», «Объект 288», «Объект 772» и «Объект 775».

Корундовый шар



Башня с корундовыми шарами. Габарит лобовой защиты 400…475 мм. Корма башни -70 мм.

Впоследствии броневая защита Харьковских танков совершенствовалась, в том числе и по направлению применения более совершенных материалов преград, так с конца 70-х на Т-64Б применялись стали типа БТК-1Ш изготовленные путем электрошлакового переплава. В среднем стойкость равнотолщинного листа полученная ЭШП на 10…15 процентов больше броневых сталей повышенной твердости. В ходе серийного производства до 1987-го года совершенствовалась и башня.

Т-72 «Урал»

Бронирование ВЛД Т-72 «Урал» было аналогично бронированию Т-64. На первых сериях танка применялись башни непосредственно переделанные из башен Т-64. В последствии применялась монолитная башня из литой броневой стали, с габаритом 400- 410 мм. Монолитные башни обеспечивали удовлетворительную стойкость против 100- 105 мм бронебойных подкалиберных снарядов (БПС) , но противокумулятивная стойкость указанных башен по защите от снарядов тех же калибров уступала башням с комбинированным наполнителем.


Монолитная башня из литой броневой стали Т-72,

также применялась на экспортном варианте танка Т-72М

Т-72А

Была усилена броня лобовой детали корпуса. Это было достигнуто за счет перераспределения толщины стальных броневых листов с целью увеличения толщины тыльного листа. Таким образом толщины ВЛД составили 60 мм стали, 105 мм СТБ и тыльный лист толщиной 50 мм. При этом габарит бронировании остался прежний.

Большие изменения претерпело бронирование башни. В серийном производстве в качестве наполнителя применялись стержни из неметаллических формовочных материалов, скрепленных перед заливкой с помощью металлической арматуры (т.н. песчаные стержни).

Башня Т-72А с песчаными стержнями,

Также применялась на экспортных вариантах танка Т-72М1

фото http://www.tank-net.com

В 1976-м году на УВЗ были попытки производства башен применявшихся на Т-64А с облицованными корундовыми шарами, но освоить подобную технологию там не удалось. Это требовало новых производственных мощностей и освоения новых технологий, которые не были созданы. Причиной этому было желание снизить стоимость Т-72А, которые также массово поставлялись в зарубежные страны. Таким образом, стойкость башни от БПС танка Т-64А превосходила стойкость Т-72 на 10%, а противокумулятивная стойкость была выше на 15…20%.


Лобовая деталь Т-72А с перераспределением толщин

и увеличенным защищающим тыльным слоем.

При увеличении толщины тыльного листа трехслойная преграда увеличивается стойкость.

Это является следствием того, что по тыльной броне действует деформированный снаряд, частично разрушившийся в первом стальном слое

и потерявший не только скорость, но и первоначальную форму головной части.

Вес трехслойной брони, необходимый для достижения уровня стойкости эквива-лентной по весу стальной брони, снижается при уменьшении толщины

лицевой броне-вой плиты до 100- 130 мм (по направлению обстрела) и соответствующем увеличе-нии толщины тыльной брони.

Средний стеклотекстолитовый слой слабо влияет на противоснарядную стойкость трехслойной преграды (И.И. Терехин, НИИ СТали) .

Лобовая деталь ПТ-91М (аналогичная Т-72А)


Т-80Б

Усиление защиты Т-80Б осуществлялось за счет применения катаной брони повышенной твердости типа БТК-1 для деталей корпуса. Лобовая деталь корпуса имела оптимальное соотношение толщин трехпреградной брони аналогичное предложенному для Т-72А.

В 1969 г. коллективом авторов трех предприятий была предложена новая противоснарядная броня марки БТК-1 повышенной твердости (dотп = 3,05- 3,25 мм), со-держащая в своем составе 4,5% никеля и добавки меди, молибдена и ванадия. В 70-е годы был проведен комплекс исследо-вательских и производственных работ по стали БТК-1, который дал возможность приступить к внедрению ее в производство танков.

Результаты испытании штампованых бортов толщиной 80 мм из стали БТК-1 показали, что они равноценны по стойкости серийным бортам толщиной 85 мм. Данный тип стальной брони применялся при изготовлении корпусов танков Т-80Б и Т-64А(Б). Также БТК-1 применяется в конструкции пакета наполнителя в башне танков Т-80У (УД), Т-72Б. Броня БТК-1 имеет повышенную противоснарядную стой-кость против подкалиберных снарядов под углами обстрела 68-70 (на 5-10% больше по сравнению с серийной броней). С увеличением толщины разни-ца между стойкостью брони БТК-1 и серийной броней средней твердости, как прави-ло, увеличивается.

При разработке танка были попытки создать литую башню из стали повышенной твердости, которые не увенчались успехом. В результате была выбрана конструкция башни из литой брони средней твердости с песчаным стержнем по типу башни танка Т-72А причем толщины брони башни Т-80Б были увеличены, такие башни были приняты для серийного производства с 1977-го года.

Дальнейшее усиление бронирования танка Т-80Б достигнуто в Т-80БВ, принятом на вооружение в 1985 г. Броневая защита лобовой части корпуса и башни этого танка принципиально такая же, как на танке Т-80Б, но состоит из усиленной комбинированной брони, и из навесной динамической защиты «Контакт-1». В ходе перехода на серийное производство танка Т-80У на некоторых танках Т-80БВ последних серий (объект 219РБ) устанавливались башни по типу Т-80У, но со старым СУО и комплексом управляемого вооружения «Кобра».

Танки Т-64, Т-64А, Т-72А и Т-80Б можно условно по критериям технологии производства и уровню стойкости отнести к первому поколению реализации комбинированного бронирования на отечественных танков. Этот период имеет рамки в пределах середины 60-х - начала 80-х годов. Бронирование танков указанных выше в целом обеспечивало высокую стойкость от наиболее распространенных противотанковых средств (ПТС) указанного периода. В частности стойкость от бронебойных снарядов типа (БПС) и оперенных бронебойных подкалиберных снарядов с составным сердечником типа (ОБПС). Примером могут служить снаряды типа БПС L28A1, L52A1, L15A4 и ОБПС типа M735 и БМ22. Причем отработка защиты отечественных танков велась именно с учетом обеспечения стойкости от ОБПС с составной активной частью БМ22.

Но коррективы в данную ситуацию внесли данные, полученные в результате обстрела указанных танков полученными в качестве трофеев в ходе арабо-израильской войны 1982 года ОБПС типа М111 с моноблочным твердосплавным сердечником на основе вольфрама и высокоэффективным демпфирующим баллистическим наконечником.

Одним из выводов специальной комиссии по определению противоснарядной стойкости отечественных танков было то, что М111 имеет преимущества перед отечественными 125 мм снарядом БМ22 по дальности пробития под углом 68 ° комбинированной брони ВЛД серийных отечественных танков. Это дает основание полагать, что снаряд М111 отрабатывался преимущественно для поражения ВЛД танка Т72 с учетом особенностей ее конструкции, в то время как снаряд БМ22 отрабатывался по монолитной броне под углом 60 градусов.

В ответ на это по завершении ОКР «Отражение» на танки вышеуказанных типов в ходе капитального ремонта на ремзаводах МО СССР на танках с 1984 года осуществлялось дополнительное усиление верхней лобовой детали. В частности на Т-72А устанавливалась дополнительная плита толщиной 16 мм, что обеспечивало эквивалентную стойкость 405 мм от ОБПС М111 при скорости предела кондиционного поражения 1428 м/с.

Не в меньшей степени оказали влияние боевые действия в 1982 году на Ближнем Востоке и на противокомулятивную защиту танков. С июня 1982 г. По январь 1983 г. В ходе выполнения ОКР «Контакт-1» под руководством Д.А. Рототаева (НИИ Стали) проводилась работа по установке динамической защиты (ДЗ) на отечественные танки. Стимулом для этого послужила продемонстрированная в ходе боевых действий эффективность израильской ДЗ типа «Блайзер». Стоит напомнить, что ДЗ разрабатывалась в СССР уже в 50-х годах, но по ряду причин на танки не устанавливалась. Подобнее эти вопросы рассмотрены в статье .

Таким образом, с 1984-го года для совершенствования защиты танков Т-64А, Т-72А и Т-80Б были приняты меры в рамках ОКР «Отражение» и «Контакт-1», которые обеспечили их защищенность от наиболее распространенных ПТС зарубежных стран. В ходе серийного производства танки Т-80БВ, Т-64БВ уже учитывали эти решения и дополнительными приварными плитами не оснащались.

Уровень трехпреградной (сталь + стеклотекстолит + сталь) броневой защиты танков Т-64А, Т-72А и Т-80Б обеспечивался подбором оптимальных толщин и твердости материалов лицевой и тыльной стальных преград. К примеру, повышение твердости стального лицевого слоя ведет к снижению противокумулятив-ной стойкости комбинированных преград, установленных под большими конструктивны-ми углами (68°). Это происходит вследствие снижения расхода кумулятивной струи на внедрение в лицевой слой и, следовательно, увеличения ее доли, участвующей в углублении кавер-ны.


Но указанные меры были лишь решениями по модернизации, в танках, производство которых началось с 1985-го года, таких как Т-80У, Т-72Б и Т-80УД были применены новые решения, которые условно могут их отнести ко второму поколению реализации комбинированного бронирования. В конструкции ВЛД стала применяться конструкция с дополнительным внутренним слоем (или слоями) между неметаллическим наполнителем. Причем внутренний слой изготавливался из стали повышенной твердости. Увеличение твердости внутреннего слоя стальных комбинирован-ных преград, расположенных под большими углами, ведет к повышению противокумулятивной стойкости преград. Для малых углов твердость среднего слоя существенного влияния не имеет.

(сталь+СТБ+сталь+СТБ+сталь).

На танках Т-64БВ нового выпуска дополнительное бронирование ВЛД корпуса не устанавливалось, так как новая конструкция уже была

адаптирована для защиты от БПС нового поколения — три слоя стальной брони, между которыми размещены два слоя стеклопластика, общей толщиной 205 мм (60+35+30+35+45).

При меньшей общей толщине, ВЛД новой конструкции по стойкости (без учета ДЗ) против БПС превосходила ВЛД старой конструкции с дополнительным 30-мм листом.

Схожая структура ВЛД применялась и на Т-80БВ.

Существовало два направления в создании новых комбинированных преград.

Первое разработанное в Сибирском филиале академии наук СССР (институт гидродинамики им. Лаврентьева, В. В. Рубцов, И. И. Терехин ). Это направление представляло собой коробчатую (плиты коробчатого типа, залитые пенаполиуретаном) или ячеистую структуру. Ячеистая преграда обладает повышенными противокумулятивными свойствами. Ее прин-цип противодействия заключается в том, что за счет явлений, происходящих на границе раздела двух сред, часть кинетической энергии кумулятив-ной струи, первоначально перешедшей в головную ударную волну, трансформируется в кинетическую энергию среды, которая повторно взаимодействует с кумулятивной струей.

Второе предложенное НИИ Стали (Л. Н. Аникина, М. И. Маресев, И.И. Терехин). При пробитии кумулятивной струей комбинированной преграды (стальная плита - наполнитель - тонкая стальная пластина) происходит куполообразное выпучивание тонкой пластины, вершина выпуклости движется в направлении, нормальном к тыльной поверх-ности стальной плиты. Указанное движение продолжается после пробития тонкой пла-стины в течение всего времени прохождения струи за составную преграду. При оптимально выбранных геометрических параметрах указанных составных преград после их пробивания головной частью кумулятивной струи происходят дополнительные соударения ее частиц с кромкой пробоины в тонкой пластине, приводящие к снижению пробивной способности струи. В качестве наполнителей исследовалась резина, полиуретан, керамика.

Данный тип брони аналогичен по своим принципам Британской броне « Burlington », которая применялась на западных танках начала 80-х годов.

Дальнейшее развитие конструкции и технологии изготовления литых башен заключалось в том, что комбинированная броня лобовых и бортовых частей башни образовывалась за счет открытой сверху полости, в которую монтировался сложный наполнитель, закрываемый сверху приварными крышками (заглушками). Башни такой конструкции применяются на более поздних модификациях танков Т-72 и Т-80 (Т-72Б, Т-80У и Т-80УД).

На Т-72Б применялись башни с наполнителем в виде плоскопараллельных пластин (отражающих листов) и вставок из стали повышенной твердости.

На Т-80У с наполнителем из ячеистых литых блоков (ячеистая отливка), заливаемых полимером (полиэфируретан), и стальных вставок.

Т-72Б

Бронирование башни танка Т-72 относится к «полуактивному» типу. В передней части башни расположены две полости, расположенные под углом 54-55 градусов к продольной оси орудия. В каждой полости пакет из 20 30-мм блоков, каждый из которых состоит из 3 слоев, склеенных вместе. Слои блока: 21-мм броневая плита, 6-мм слой резины, 3-мм металлическая плита. К броневой плите каждого блока приварены 3 тонкие металлические пластинки, обеспечивающие расстояние между блоками 22 мм. Обе полости имеют 45-мм броневую плиту, расположенную между пакетом и внутренней стенкой полости. Общий вес содержимого двух полостей 781 кг.


Внешний вид пакета бронирования танка Т-72 с отражающими листами

И вставками стальной брони БТК-1

Фото пакета J. Warford. Journal of military ordnance. May 2002,

Принцип действия пакетов с отражающими листами

Бронирование ВЛД корпуса Т-72Б первых модификаций состояло из составной брони из стали средней и повышенной твердости прирост стойкости и эквивалентное ему снижение бронебойного действия боепри-паса обеспечивается за счет расхода струи на разделе сред. Стальная наборная преграда является одним из простейших конструктивных решений противоснарядного защитного устройства. Такая комбинированная броня из нескольких сталь-ных плит, обеспечивала 20%-ный выи-грыш в массе по сравнению с гомогенной броней может при тех же габаритных размерах.

В дальнейшем применялся более сложный вариант бронирования с использованием «отражающих листов» по принципу функционирования аналогичных пакету, применяемому в башне танка.

На башне и корпусе Т-72Б устанавливался ДЗ «Контакт-1». Причем контейнеры установлены непосредственно на башню без предания им угла обеспечивающего максимально эффективную работу ДЗ. В результате этого эффективность ДЗ установленной на башне была значительно снижена. Возможным объяснением служит то, что при проведении государственных испытаний Т-72АВ в 1983-ем году испытываемый танк был поражен по причине наличия участков, не перекрытых контейнерами ДЗ и конструкторы пытались добиться лучшего перекрытия башни.


Начиная с 1988 года ВЛД и башня была усилена комплексом ДЗ «Контакт- V » обеспечивающего защиту не только от кумулятивных ПТС а и от ОБПС.

Структура брони с отражающими листами представляет собой преграду, состоящую из 3-х слоев: плиты, прокладки и тонкой пластины.


Проникание кумулятивной струи в броню с «отражающими» листами


Рентгеновский снимок демонстрирует боковые смещения частиц струи

И характер деформирования пластины


Струя, проникая в плиту, создает напряжения, приводящие сначала к местному вспучиванию тыльной поверхности (а), а затем к ее разрушению (б). При этом происходит значительное вспучивание прокладки и тонкого листа. Когда струя пробивает прокладку и тонкую пластину, последняя уже начала движение в сторону от тыльной поверхности плиты (в). Поскольку между направлением движения струи и тонкой пластины имеется некоторый угол, то в какой-то момент времени пластина начинает набегать на струю, разрушая ее. Эффект от использования «отражающих» листов может достигать 40% в сравнении с монолитной броней той же массы.

Т-80У, Т-80УД

При совершенствовании броневой защиты танков 219М (А) и 476, 478 рассматривались различные варианты преград особенностью которых было использование энергии самой кумулятивной струи для ее разрушения. Это были наполнители коробчатого и ячеистого типа.

В принятом варианте состоит из ячеистых литых блоков, заливаемых полимером, со стальными вставками. Бронирование корпуса обеспечивается оптимальным соотношением толщин стеклотекстолитового наполнителя и стальных платин высокой твердости.

Башня Т-80У (Т-80УД) имеет толщину наружной стенки 85…60 мм, тыльной - до 190 мм. В открытые сверху полости, в монтировался сложный наполнитель, который состоял из ячеистых литых блоков, заливаемых полимером (ПУМ) установленного в два ряда и разделенных стальной плитой 20 мм. За пакетом установлена плита БТК-1 толщиной 80 мм. На наружной поверхности лба башни в пределах курсового угла + 35 установлены цельные V -образные блоки динамической защиты «Контакт-5». На ранних вариантах Т-80УД и Т-80У устанавливался НКДЗ «Контакт-1».

Подробнее про историю создания танка Т-80У смотрите в фильме - Видео про танк Т-80У (объект 219А)

Бронирование ВЛД многопреградное. С начала 80-х годов было испытано несколько вариантов конструкции.

Принцип действия пакетов с «ячеистым наполнителем»

Этот тип брони реализует способ так называемых «полуактивных» систем защиты, в которых для защиты используется энергия самого средства поражения.

Способ предложен институтом гидродинамики Сибирского отделения АН СССР и заключается в следующем.

Схема действия яче-истой противокумулятивной защиты:

1 - кумулятивная струя; 2- жидкость; 3 - металли-ческая стенка; 4 - ударная волна сжатия;

5 - вторичная волна сжатия; 6 - схлопывание каверны


Схема одинарных ячеек: а -цилиндрическая, б - сферическая

Стальная броня с полеуретановомы (полеэфируретановым) наполнителем

Результаты исследований образцов ячеистых преград в различном кон-структивном и технологическом исполнении были подтверждены натурными испытаниями при обстреле кумулятивными снарядами. Результаты показали, что применение ячеистого слоя вместо стеклопластика позволяет уменьшить габаритные размеры преграды на 15%, а массу - на 30%. По сравнению с монолитной сталью может быть достигнуто уменьшение массы слоя до 60% при сохранении близкого к ней габарита.

Принцип действия брони "откольного" типа.

В тыльной части ячеистых блоков также находятся заполненные полимерным материалом полости. Принцип действия этого типа брони примерно таков же, как и ячеистой брони. Здесь также для защиты используется энергия кумулятивной струи. Когда кумулятивная струя, двигаясь, выходит на свободную тыльную поверхность преграды, элементы преграды у свободной тыльной поверхности под действием ударной волны начинают двигаться в направлении движения струи. Если же создать условия, при которых материал преграды будет двигаться на струю, то энергия летящих от свободной поверхности элементов преграды будет расходоваться на разрушение самой струи. А такие условия можно создать изготовлением на тыльной поверхности преграды полусферических или параболических полостей.

Некоторые варианты верхней лобовой детали танка Т-64А, Т-80, вариант Т-80УД (Т-80У), Т-84 и разработка новой модульной ВЛД Т-80У (КБТМ)

Наполнитель башни Т-64А с керамическими шарами и варианты пакета Т-80УД -

ячеистая отливка (наполнитель из ячеистых литых блоков, заливаемых полимером)

и металлокерамический пакет


Дальнейшие совершенствование конструкции было связанны с переходом на башни со сварной основой. Разработки, направленные на увеличение динамических прочностных характеристик литых броневых сталей с целью повышения противоснарядной стойкости, дали существенно меньший эффект, чем аналогичные разработки по катаной броне. В частности в 80-е годы были разработаны и готовы к серийному производству новые стали повышенной твердости: СК-2Ш, СК-3Ш. Таким образом, применение башен с основой из проката позволило без увеличения массы повысить защитный эквивалент по основе башни. Такие разработки предприняли НИИ Стали совместно с конструкторскими бюро, башня с основой из проката для танка Т-72Б обладала несколько увеличенным (на 180 л.) внутренним объемом , рост массы составил до 400 кг по сравнению с серийной литой башней танка Т-72Б.

Вар и ант башни усовершенствованного Т-72, Т-80УД со сварной основой

и металлокерамическим пакетом, серийно не применялась

Пакет наполнителя башни выполнялся с применением керамических материалов и стали повышенной твердости или из пакета на основе стальных пластин с «отражающими» листами. Прорабатывались варианты башен с съемным модульным бронированием для лобовых и бортовых частей.

Т-90С/А

Применительно к башням танков одним из существенных резервов усиления их противоснарядной защиты или снижения массы стальной основы башни при сохранении существующего уровня противоснарядной защиты является повышение стойкости применяемой для башен стальной брони. Основа башни Т-90С/А изготовлена из стальной брони средней твердости , которая существенно (на 10-15%) превосходит по противоснарядной стойкости литую броню средней твердости.

Таким образом, при одинаковой массе башня, выполненная из катаной брони, может иметь более высокую противоснарядную стойкость, чем башня из литой брони и, кроме того, в случае применения для башни катаной брони возможно дальнейшее повышение ее противоснарядной стойкости.

Дополнительным преимуществом башни из проката является возможность обеспечения более высокой точности ее изготовления, так как при изготовлении литой броневой основы башни, как правило, не обеспечивается необходимое качество литья и точность отливки по геометрическим размерам и массе, что вызывает необходимость проведения трудоемких и немеханизированных работ по устранению дефектов литья, подгонки размеров и массы отливки, включая подгонку полостей под наполнители. Реализация преимуществ конструкции башни из проката в сравнении с литой башней возможна только тогда, когда ее противоснарядная стойкость и живучесть в местах расположения соединений деталей из катаной брони отвечает общим требованиям по противоснарядной стойкости и живучести башни в целом. Сварные соединения башни Т-90С/А выполнены с перекрытием полностью или частично стыков деталей и сварных швов со стороны снарядного обстрела.


Толщина брони бортовых стенок - 70 мм, лобовые броневые стенки имеют толщину 65- 150 мм крыша башни выполнена сварной из отдельных деталей, что снижает жесткость конструкции при фугасном воздействии. На наружной поверхности лба башни установлены V -образные блоки динамической защиты.



Варианты башен с сварной основой Т-90А и Т-80УД (с модульной броней)

Другие материалы по броне:

Использованы материалы:

Отечественные бронированные машины. XX век: Научное издание: / Солянкин А.Г, Желтов И.Г., Кудряшов К.Н. /

Том 3. Отечественные бронированные машины. 1946-1965 гг.- М.: ООО «Издательство “Цейхгауз”», 2010.

М.В. Павлова и И.В. Павлова «Отечественные бронированные машины 1945-1965» — ТиВ №3 2009

Теория и конструкция танка. — Т. 10. Кн. 2. Комплексная защита / Под ред. д.т.н., проф. П . П . Исакова . — М .: Машиностроение , 1990.

J. Warford. The first look at Soviet special armor. Journal of military ordnance. May 2002.