Проницаемость мембран для воды и нейтральных молекул. Клеточная мембрана. Патологическая физиология сосудистой проницаемости

Клеточные мембраны

Клеточные мембраны

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии - гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции биомембран

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .

  • маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами . К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клеки наружу: диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия .

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell . - 5th ed. - New York: Garland Science, 2007. - ISBN 0-8153-3218-1 - учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт. . - 3-е издание, исправленное и дополненное. - Москва: издательство Московского университета, 2004. - ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). - 1-е издание. - Москва: Мир, 1997. - ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. - Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. - Москва: Наука, 1994.

См. также

  • Владимиров Ю. А., Повреждение компонентов биологических мембран при патологических процессах

Wikimedia Foundation . 2010 .

Смотреть что такое "Клеточные мембраны" в других словарях:

    У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии гидрофобным «хвостам». На рисунке показаны… … Википедия

    - (от лат. membrana кожица, перепонка), сложные высокоорганизованные надмоле кулярные структуры, ограничивающие клетки (клеточные, или плазматич., мембраны) и внутриклеточные органоиды митохондрии, хлоропласты, лизосомы и др. Представляют собой… … Химическая энциклопедия

    У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии гидрофобным «хвостам». На рисунке показаны… … Википедия

Проницаемость - это способность тканей, клеток и субклеточных структур (ядра клетки и др.) пропускать газы, воду и различные вещества. Проникновение веществ через биологические мембраны происходит пассивно или путем активного переноса с участием специальных механизмов. Проницаемость мембран для различных агентов зависит как от физико-химических свойств последних, так и от особенностей самих мембран.

Нарушения проницаемости могут возникать в результате действия разнообразных повреждающих факторов: высокой и низкой температуры, облучения, некоторых веществ (например, ), недостатка кислорода, витаминов, гормонов и т. д. Нарушения проницаемости играют важную роль в патогенезе многих болезненных процессов: (см.), (см.), шока (см.), инфекционных заболеваний, нарушений выделительных процессов и др. Изменения проницаемости могут быть как проявлением защитной реакции, так и причиной многих тяжелых расстройств.

Проницаемость - это способность клеток и тканей пропускать и поглощать растворы и газы из окружающей среды и выделять их наружу. Проницаемость - общебиологическая проблема, связанная с взаимоотношением организма со средой, с обменом веществ и имеющая важное значение для физиологии и патологии.

Имеются следующие теории избирательной проницаемости клеток и тканей, по-разному трактующие субстрат и условия этого процесса. Согласно мембранной теории клеточной проницаемости распределение веществ между клеткой и средой объясняется наличием субмикроскопической мембраны, избирательно проницаемой для молекул и ионов. Протоплазма клеток считается коллоидом, в котором почти вся вода находится в свободном состоянии и обладает свойствами растворителя. В основе сорбционной теории проницаемости лежит представление о протоплазме как о несмешивающейся с водой фазе, в которой вода и ионы находятся в связанном состоянии. Поступление веществ в клетку регулируется всей протоплазмой и определяется факторами сорбции (растворимостью, химическим связыванием, адсорбцией и др.). По современным представлениям клеточные мембраны (см. Клетка) имеют общую толщину 70-80 А и состоят из двух параллельных слоев молекул липидов, ориентированных полярными группами к поверхности мембраны, с адсорбированными на них слоями белка. Кроме того, в цитоплазме имеется система мембранных образований, связанных с эндоплазматической сетью и митохондриями.

Низкомолекулярные вещества, вода, газы могут проникать в клетку под действием осмотических сил (см. Осмотическое давление), путем диффузии (см.) и ультрафильтрации (см.), без энергетических затрат (пассивный перенос). Для ионов проницаемость зависит от электрического заряда, градиента потенциала между наружной и внутренней поверхностью мембран.

Активным переносом обозначаются процессы, происходящие с затратой энергии, вырабатываемой в клетке в процессе метаболизма (фосфорилирование, дефосфорилирование, образование сложных комплексов веществ, наличие молекул-переносчиков, участие ферментов и т. д.). При этом вещества могут двигаться против градиента концентраций. Так, содержание ионов К в эритроцитах в 20 раз выше, чем ионов Na, однако ионы К накапливаются в них, а ионы Na выходят в плазму против 50-кратного градиента концентрации. Одним из способов проникновения веществ в клетку является пиноцитоз (см.). Процесс этот заключается в адсорбции веществ клеточной оболочкой, уменьшении ее поверхностного натяжения и впячивании внутрь цитоплазмы с образованием пиноцитарных вакуолей; впоследствии их оболочка разрушается, и вещества включаются в клеточный метаболизм.

Селективная проницаемость веществ зависит как от структуры и химического строения клеточных мембран, так и от размеров, электрического заряда, гидратации, растворимости веществ в липоидах. В отличие от сильных кислот и оснований, не проникающих в клетку, слабые кислоты и основания, в составе которых преобладают недиссоциированные молекулы, обладают большой проникающей способностью. При сдвиге активной реакции в кислую или щелочную сторону, сопровождающемся изменением степени диссоциации молекул, усиливается или ослабляется проникновение веществ в клетку. Так, установлено, что третичные аммониевые соединения, не несущие заряда, проникают в мозг, в отличие от ионизированных четвертичных аминов и их солей.

В организме многие ткани являются мембранами, обладающими избирательной проницаемостью (эндотелий капилляров и серозных полостей, кишечная стенка, эпителий кожи и др.). Проницаемость таких мембран зависит не только от составляющих их клеточных структур, но и от проницаемости межклеточного вещества. Важное значение имеет проницаемость гисто-гематических барьеров, регулирующих относительное постоянство внутренней среды органов и тканей (см. Барьерные функции).

Нарушения проницаемости являются существенным звеном в патогенезе многих патологических процессов (аллергия, воспаление, отек, шок), в механизме изменений всасывания (см.), секреции, экскреции, обмена веществ. Особое значение в клинической патологии имеют нарушения проницаемости капилляров, наблюдаемые при многих инфекционных, токсических, аллергических и других заболеваниях (дизентерия, бруцеллез, скарлатина, грипп, ревматизм, брюшной и сыпной тифы, тонзиллит, нефрит и др.). Нарушения проницаемости сосудов отмечены при заболеваниях сердечно-сосудистой системы (ревматический панкардит, миокардит, септический эндокардит, гипертоническая болезнь, атеросклероз), органов дыхания (эмфизема легких, пневмония, пневмосклероз), почек, печени, кожи, нервной системы. Изменения сосудистой проницаемости характерны для разных стадий лучевой болезни.

Важное значение в патогенезе ряда заболеваний имеют также нарушения проницаемости гисто-гематических барьеров. В частности, проницаемость гематоэнцефалического барьера увеличивается при черепно-мозговой травме, воспалении оболочек мозга, некоторых формах эпилепсии, нарушениях мозгового кровообращения, шоке, лучевой болезни и других патологических процессах. Имеются данные о влиянии различных лекарственных веществ на проницаемость капилляров, гематоэнцефалического и других гисто-гематических барьеров, что позволяет регулировать нарушения проницаемости в условиях патологии.

Растение - непре­рывно поглощает извне разные вещества, необходимые для его ж/д, а также постоянно выделяет вещества во вн. среду. Это указывает на то, что мембраны растения проницаемы, т. е. способны пропускать через себя поглощаемые и выделяемые вещества. Но клеточные мембраны пропускают через себя не все вещества, а лишь некоторые. Т. о., они обладают избирательной проницаемостью. Факты подтверждающие то, что в-ва в кл. поступают не только пассивно, но и активно:

1. Вещества проникают в клетку не только по градиенту концентраций (от высокой к более низкой) - пассивно, но и против градиента, когда в клетке накапливается веществ больше, чем в окружающей среде. Например концентрация йода, брома в талломах водорослей, растущих в морской воде.

2. В клетку могут поступать и из нее выделяться не только низкомолекулярные соединения, но и вещества с крупными молекулами.

3. При нахождении в растворе какой-либо соли, ионы, составляющие ее молекулу, будут проникать в клетку не равномерно, а в различных соотношениях (разное количество катионов или анионов).

Во-первых , проницаемость мембран цитоплазмы сильно варьирует в течение жизни раст. Она зависит от t°, света, содержания влаги и действия ядовитых в-в. Во-вторых , проницаемость связана с дыханием, что можно наблюдать при действии веществ, стимулирующих и ослабляющих этот процесс. Так, при действии макроэнергетического АТФ увеличивается поступление веществ в корни, а клеточные яды (цианид, фторид и др.) подавляют этот процесс. Известно несколько теорий, пытающихся объяснить проницаемость активными процессами. Основная - Теория переносчиков . Сущность: предполагается, что само вещество (А), не может проникать через мембрану. Тогда оно соединяется с особым переносчиком (X), который транспортирует его; затем переносимое вещество освобождается и остается внутри клетки, а переносчик с другим веществом (В) выходит наружу и снова становится способным к переносу. Схематически перенос вещества в клетку можно изобразить следующим образом: A + X =AX ->> AX =A + X.

Обратный перенос: В + X =ВХ ->> ВХ =В + X.

Предполагается, что переносчики - орг. в-ва белковой природы; один для переноса катионов , др. для переноса анионов . В основе их действия лежит процесс обменной адсорбции, когда поглощаемые и переносимые ионы обмениваются на другие, которых в клетке избыток. Катионы , как правило, обмениваются на Н + и Na + , Анионы - на ОН и НСО 3 . У бактерий они представлены Ant (типа грамицидина и валина). У высших растений их роль выполняют мембранные АТФ-азы и ионные насосы.

Ионные насосы - особые образования, встроенные в клеточные мембраны. Это глобулы, состоящие из 3-х субъединиц. Две из них представляют собой белковый канал по которому движутся ионы, третья - фермент АТФ-аза, при участии которой происходит распад АТФ с освобождением остатка фосфорной кислоты и некоторого количества энергии. К+, Na+-нacoc , который выводит из клетки натрий и закачивает калий; протонный, или водородный , выносящий Н+ и закачивающий другие вещества. Действие ионных насосов: в наружной среде (например в почве) всегда много ионов натрия. Вследствие высокой концентрации он движется по градиенту и пассивно проникает в клетки. Но растению такое большое кол-во натрия не нужно, поэтому в клетках быстро создается его избыток, который за счёт освобождающейся энергии АТФ выбрасывается из них. Калий напротив, необходим растению в больших количествах, чем натрий, однако в почве его мало, и сам по градиенту он поступать не может. Тогда одновременно с выбросом натрия происходит принудительное закачивание калия. Транспорт многих других веществ - минеральных и органических - у растений осуществляет Н-насос, который и служит главным переносчиком. Протонный насос участвует при загрузке флоэмы сахарами, образующимися при фотосинтезе.

· 01.04.2012

Во множестве статей о воде упоминается отрицательные значения ОВП внутренних жидкостей организма и энергия клеточных мембран (жизненная энергия организма).

Попытаемся разобраться о чём собственно речь и понять смысл этих утверждений с научно-популярной точки зрения.

Многие понятия и описания будут даны в сокращённом виде, а более полную информацию можно получить в Википедии или по ссылкам указанным в конце статьи.

(Или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и внешней средой.

Клеточная мембрана настолько избирательна, что без её разрешения ни одно вещество из внешней среды не сможет даже случайно проникнуть в клетку. В клетке нет ни единой бесполезной, ненужной молекулы. Выходы из клетки также тщательно контролируются. Работа клеточной мембраны является существенной и не допускает даже малейшей ошибки. Внедрение вредного химического вещества в клетку, снабжение или выделение веществ в избыточном количестве или сбой выделения отходов приводит к гибели клетки.

Свободные радикалы атакуют

Барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход.

Для элементов K , Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.

Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТ Фаза, которая активно вкачивает в клетку ионы калия (K + ) и выкачивают из неё ионы натрия (Na + ).

Осуществление генерации и проведения биопотенциалов . С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К + внутри клетки значительно выше, чем снаружи, а концентрация Na + значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.


Потенциал действия

Потенциал действия — волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала.

По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны.

Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов.

Тем не менее, в основе любого потенциала действия лежат следующие явления:

  1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).
  2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
  3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны.

Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя. Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка -70..-90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы.

Снаружи — на порядок больше ионов натрия, кальция и хлора, внутри — ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов, сульфатов.

Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основываются главным образом на поведении потенциалзависимых натриевых (Na + ) и калиевых (K + ) каналов. Начальная фаза ПД формируется входящим натриевым током, позже открываются калиевые каналы и выходящий K + — ток возвращает потенциал мембраны к исходному уровню. Исходную концентрацию ионов затем восстанавливает натрий-калиевый насос.

По ходу ПД каналы переходят из состояния в состояние: у Na + каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + каналов два - закрытое и открытое.

Выводы

1. ОВП внутриклеточной жидкости действительно имеет отрицательный заряд

2. Энергия клеточных мембран имеет отношение к скорости передаче нервного сигнала и мнение о «подзарядке» внутриклеточной жидкости водой с ещё более отрицательным ОВП кажется мне сомнительным. Однако, если предположить что по пути до клетки вода изрядно потеряет ОВП-потенциал, то у сего утверждения появляется вполне практический смысл.

3. Нарушение работы мембраны вследствие неблагоприятной среды приводит к гибели клетки

Клеточные мембраны разделяют различные по составу компартменты

Липидный бислой биологических мембран обладает очень низкой проницаемостью для большинства биологических молекул и ионов

Большинство веществ проходит через мембрану при участии

Транспорт ионов и других метаболитов через мембрану контролирует электрические и метаболические функции клетки

Биологические мембраны представляют собой избирательно проницаемые барьеры, которые окружают клеточные компартменты. Плазматическая мембрана отделяет содержимое клетки от внешней среды, а в клетках эукариот специализированные компартменты отделены от цитозоля дополнительными мембранами.

Клеточные компартменты существенно различаются по составу мембран и внутренней-среды. В ходе эволюции клетки выработали механизм для поддержания и регулирования состава среды в каждом компартменте.

Поддержание определенной концентрации растворенных веществ по обеим сторонам мембраны является необходимым условием существования гомеостаза, который представляет собой способность клетки к поддержанию относительного постоянства состава внутренней среды, обеспечивающей протекание жизненно необходимых метаболических процессов.

В результате гомеостатической регуляции концентрации ионов в цитозоле по обеим сторонам мембраны создается относительное осмотическое давление, которое регулирует клеточный объем. Более того, быстро наступающие изменения в транспорте ионов через мембраны носят временный характер и используются клеткой как механизм адаптации к изменившимся обменным процессам и для обработки информации (например, сигналов стресса), а также для транспорта в клетку питательных веществ или удаления из нее продуктов обмена.

Поскольку внутренняя часть липидного бислоя обладает гидрофобными свойствами, она непроницаема для полярных, гидрофильных и крупных биологических молекул. Каким образом неорганические ионы, а также заряженные молекулы и водорастворимые соединения селективно проходят через клеточные мембраны?

Сейчас мы знаем, что транспорт ионов и метаболитов через мембраны клеточных компартментов происходит с участием мембранных белков. Транспортные белки локализованы в плазматической мембране, а также в мембранах внутриклеточных органелл, например эндоплазматического ретикулума, аппарата Гольджи, эндосом, лизосом и митохондрий. Для каждого типа мембран, так же как и для каждого типа клеток, характерен определенный набор транспортных белков.

Далее в отдельных статьях на сайте мы рассмотрим мембранные белки , которые принимают участие в транспорте ионов и небольших молекул, таких как глюкоза. Вначале мы остановимся на основных классах мембранных транспортных белков, а затем более подробно расскажем о строении и функции отдельных белков. Мы также обсудим вопросы совместного функционирования различных типов транспортных белков в клетке.

Большая часть статей на сайте посвящена транспорту ионов через мембрану . Клетка использует мембранные белки для поддержания определенной концентрации ионов во внутренней среде. Эта концентрация отличается от той, в которой они находятся во внеклеточной среде.

Различие в концентрации является причиной того, что в покоящихся клетках животных внутриклеточная среда заряжена отрицательно по отношению к внешней среде. Эти различия в концентрации и заряде создают электрохимический градиент, который клетка использует для запасания потенциальной энергии. Регуляция электрохимического градиента на мембране позволяет клетке осуществлять ряд основных функций, таких как выработка энергии, а также обрабатывать электрические сигналы поступающие в клетку и выходящие из нее.

В отдельных статьях на сайте также рассмотрены некоторые методы , позволяющие изучать мембраны. Поток заряженных частиц (ионный ток) через мембрану регистрируется электрофизиологическими методами. Этими методами можно исследовать как клетку целиком, так и фрагменты ее мембраны. Они также позволяют оценивать влияние различных воздействий, например изменение ионного состава, эффекты ингибиторов или активаторов транспорта.

Впервые ионные каналы были идентифицированы и выделены благодаря использованию природных токсинов (ядов), которые являются ингибиторами их функций. Эти токсины были также использованы в качестве инструмента для изучения функционирования каналов. Взаимосвязь между структурой и функцией каналов изучалась с использованием рекомбинантных транспортных белков, сайт-специфического мутагенеза, техники интеграции очищенных белков в искусственные мембраны и экспрессии транспортных белков в гетерологичных клетках.

Выяснение атомарной структуры части транспортных белков во многом способствовало пониманию их функционирования. Наряду с выяснением деталей мембранного связывания и транспорта метаболитов эти «фотографии» структуры помогают построить общие модели процессов трансмембранного транспорта.