Какие клетки не содержат днк. Строение ДНК: особенности, схема. Какое строение имеет молекула ДНК? Химическое строение ДНК

Возможно, судить о генах риска различных заболеваний только по клеткам крови -- сильное упрощение. Генетикам удалось доказать, что в клетках крови и тканях человеческого организма могут содержаться разные ДНК.

Ученые находят все больше и больше генов, связанных с риском каких-то заболеваний. Как правило, это определенные вариации в строении гена. Обычно подозрительные гены изучают из ДНК кровяных клеток – это проще, а образец ткани (биопсию) берут только при подозрении на раковую опухоль. Такое поведение исследователей основано на постулате: все клетки организма обладают одним и тем же геномом. Поэтому все равно, из какой ткани анализировать гены.

Ученые Моррис Швейцер (Dr. Morris Schweitzer), Брюс Готтлиб (Dr. Bruce Gottlieb) и их коллеги

Только в случае рака специалисты работают с тканевыми клетками. И именно в них находят специфические изменения генов. «При болезнях неракового происхождения обычно мы исследует геном в клетках крови и ожидаем, что клетки крови скажут нам, что случилось с другой тканью, -- говорят генетики из Центра переходных исследований рака (Centre for Translational Research in Cancer) Университета МакГилла (McGill University) в Монреале, Канада. – Теперь нам кажется, что это слишком упрощенный подход».

Брюшная аорта Часть нисходящего отдела аорты, несущего кровь к желудку, печени, селезенке, кишечнику, почкам (чревный ствол).

В последние годы найдено немало мутаций в клетках разных тканей, которые, предположительно, можно связать с заболеваниями этих тканей. Группа ученых из Монреаля впервые изучила вариации одного из ключевых генов у пациентов с аневризмой брюшной аорты. Но главное в том, что они увидели следующее:в клетках крови и в клетках ткани аорты содержались разные вариации этого гена.

Механизмы аневризмы

Аневризма брюшной аорты – это выпячивание сосудистой стенки в виде мешка. При этом стенки аорты воспаляются, разрушается слой эластина и уменьшаются в количестве мышечные клетки (они погибают путем апоптоза -- клеточного самоубийства). Выпячивание может привести к разрыву аорты, что смертельно в 90%. Болезнь поражает обычно мужчин старше 65 лет, которые курят, страдают от повышенного давления и имеют высокий уровень холестерина.

Исследование генных вариаций, связанных с аневризмой, как и в других случаях, до сих пор проводили на клетках крови – лейкоцитах. Ключевым геном этого заболевания считается ген ВАК1. Он участвует в биохимическом механизме апоптоза – запрограммированной клеточной смерти. Канадские ученые впервые сравнили вариации этого гена в клетках крови и в клетках ткани аорты.

Исследовали гены 31 пациента с аневризмой брюшной аорты. Они перенесли оперативное лечение, в течение которого у них и взяли биопсию. Контролем служили образцы ткани брюшной аорты у здоровых добровольцев.

Гены крови и гены сосуда – не близнецы

В клетках аорты всех пациентов ученые нашли вариации гена ВАК1, которые, если смотреть по базе данных лейкоцитарных генов, встречаются крайне редко (меньше чем в 0,06% случаев). Возможно, именно эти вариации усиливают апоптоз и тем самым участвуют в развитии аневризмы.

Но в клетках крови ни одного из пациентов этих генных вариаций не было. Это первый важный результат. Он показывает, что ключевые для болезни мутации в данном случае появляются в течение жизни человека и только в данной ткани – в аорте.

Мутации возникают раньше, чем болезнь

Второй результат оказался еще более неожиданным: три из обнаруженных в ткани больной аорты мутаций были найдена и в пяти образцах ткани здоровой аорты. О причинах этого ученые пока могут только строить предположения.

Возможно, мутаций гена ВАК1 недостаточнодля развития аневризмы. Есть другие гены, задействованные в апоптозе, и может быть, их мутации не менее важны. Возможно, мутации ключевых генов постепенно накапливаются в здоровой ткани и не сразу приводят к болезни. Возможно, их наличие объясняет предрасположенность человека к появлению аневризмы. И факторы риска -- курение, повышенное давление и высокий уровень холестерина --при наличии мутаций работают на болезнь. «Поскольку аневризма – это результат хронических разрушительных процессов в сосуде, которые продолжаются годами, то даже небольшие изменения в склонности к апоптозу могут давать вклад в ее развитие», -- считают ученые.

Вероятно, результаты работы касаются не только аневризмы аорты, но и других сосудистых заболеваний, например, сердечных или мозговых артерий. Но это еще предстоит исследовать.

В этом разделе вы узнаете о работе Божественной Матрицы, существующей внутри вас, - о вашей ДНК. Сначала общие положения, а затем некоторые подробности.

Полная генетическая матрица, задающая инструкции для создания всех возможных вариантов конкретного организма, защиты называется геномом данного организма. Геном - это полный генный комплект организма, и он содержится во всей своей полноте в ядре каждой клетки данного организма.

Геном подразделяется на хромосомы, а хромосомы построены из ДНК. Каждая клетка вашего организма содержит ДНК, и все клетки находятся под контролем ДНК. В человеческом организме находится более 10 триллионов клеток, и посредством сложнейших и масштабных процессов все они строго организованы и находятся в постоянном общении между собой. Каждая клетка наделена сознанием, осознает себя и другие клетки и выполняет свою конкретную функцию в едином ансамбле с другими клетками.

Геном содержит наследственные и культурологические импринты и коды, обусловливающие цвет кожи и глаз, группу крови, рост, цвет волос и каждую мыслимую черту человека. Это то, что делает отпечатки пальцев уникальными и характерными только для этого индивида. Он также отвечает за врожденные пороки и другие наследственные отклонения от нормы.


Хромосомы при большом увеличении


Гораздо менее известно то, что на ДНК можно влиять своим намерением.

ДНК внутри каждого клеточного ядра образует линейные нити, известные как хромосомы. В каждой клетке человека содержится 46 хромосомных нитей, которые большую часть времени существуют как 23 пары хромосом. Каждая нить хромосом состоит из множества генов, каждый из которых несет ответственность за одну четкую биологическую функцию. Будучи маленькой субъединицей хромосомы, ген также состоит из ДНК.

Если представить хромосому как длинный пассажирский поезд, каждый вагон поезда был бы длинной нитью ДНК, а каждый пассажир - ген, кодирующий синтез одного конкрет ного белка. ДНК расшифровывается как дезоксирибонуклеи- новая кислота. (Последние открытия показывают, что ДНК на самом деле является солью, а не кислотой, но давайте не будем изменять силу, стоящую за шифром ДНК.)



Лучше всего представить молекулу ДНК в виде скрученной лестницы со ступеньками-перекладинами. Она состоит из двух параллельных линейных молекул, построенных из повторяющихся молекул сахара и фосфата, в промежутках удерживаемых вместе при помощи базовых молекул (оснований), называемых нуклеотидами (перекладины лестницы). Эта структура двойной спирали свернута, как телефонный провод. И затем свернута еще раз, как тот же телефонный провод, скрученный в тугой шар.

Пары четырех оснований (аденин, тимин, цитозин и гуанин) составляют каждую перекладину похожей на лестницу двойной спирали структуры ДНК. Таким образом, каждая перекладина состоит из двух спаренных оснований: [аденин + тимин] или [цитозин + гуанин].

Эти основные нуклеотиды (перекладины лестницы) составляют код ДНК, причем каждый расположен точно в соответствии с Божественной Матрицей. Мы можем утверждать, что каждая клетка обладает своей собственной целью и сознанием, и, обладая сознанием, она способна к общению. Наша способность общаться с клетками является жизненно важным аспектом самоисцеления, позволяющего вновь обрести силу.

Давайте рассмотрим некоторые детали функционирования. Сила ДНК заключается в ее способности управлять функцией, поведением и структурой клетки. Она дает инструкции, использует свой собственный язык и, в некотором смысле, является «текстом», или «сценарием», которому следует весь организм на клеточном/молекулярном уровне. Код, или «алфавит», этого «сценария» может быть описан в терминах последовательности перекладин спирали-лестницы ДНК.

Генетические черты индивидов и всего вида сохраняются, или «архивируются», из поколения в поколение в форме ДНК. ДНК контролирует рост клеток и обеспечивает исцеление, обновление и окончание жизнедеятельности каждой клетки организма. Таким образом, ДНК выступает в роли как физиологического регулятора клетки, так и хронометра, так как она следит за биологическими часами каждой клетки, а следовательно, за ее долговечностью. Увеличение продолжительности жизни клеток (и всего организма) сводится к тому, чтобы научиться, как переставлять биологические часы, контролируемые ДНК.



Ядро каждой человеческой клетки содержит двадцать три пары хромосом.

Хромосома содержит длинные нити нуклеотидов ДНК. Имеется четыре различных вида нуклеотидных оснований: гуанин (G), цитозин (С), тимин (Т) и аденин (А). Набор трех нуклеотидов составляет триплет.


Способность английского письменного языка хранить и передавать информацию обусловлена тем, как 26 букв алфавита складываются в слова. Генетическая информация в ДНК фактически определяется последовательностью четырех нуклеиновых кислот (или азотистых оснований): аденина, тимина, цитозина и гуанина, соответственно обозначаемых буквами А, Т, С и G. Именно из этих «букв» складывается содержащий информацию «текст» в ДНК. Точно так же как 26 строительных блоков английского языка подчиняются некоторым правилам сочетания и последовательности, 4 строительных блока ДНК подчиняются своему собственному набору правил (C-G, G-C, А-Т, Т-А) (см. рис. 1).




Каждая перекладина лестницы состоит из пары оснований. Каждый несущий отрезок лестницы проецирует одно основание в центр спирали. Четыре основания соединяются в пары весьма конкретным образом. Аденин всегда образует пару с тимином, а цитозин соединяется только с гуанином. Поэтому, когда вы видите Т на перекладине ДНК, вы знаете, что напротив будет находиться A, a G будет напротив С. Например, если последовательность на одной стороне цепибудетА-T-A-G-C-G, то его партнером на другой стороне цепи будет T-A-T-C-G-C.


Сущностью Божественной Матрицы является последовательная точная информация, и сила работы этой ДНК заключается в нашей способности передавать свое намерение этим основаниям и их комбинациям. Именно этим наука подтвердит обоснованность тезиса о превалировании сознания над материей. 5 апреля 1990 года в Американской ассоциации холистической медицины доктор Райан Драм и Лен Виснески представили результаты своих исследований. Доктор Драм, специалист в области электронной микроскопии, обнаружил, что намерение имеет молекулярные последствия, а Виснески, микробиолог, доказал, что намерение служит стимулятором для синтеза рецепторов. Согласно исследованиям Питера Нопфлера, «во все клетки, имеющие рецепторы и память, намерение может посылать вибрацию или стимулировать эти рецепторы. Поэтому, если у вас жажда и вы думаете о воде, ментально синтезируются, а физически метаболизируются тысячи видов клеточной деятельности. Еще до того, как вы начнете пить воду, ваши намерения и мысли уже запустили деятельность на клеточном уровне, чтобы ваш мозг, желудок, почки и прямая кишка приготовились принять воду, иными словами, намерения метаболизируются физическим телом». Представляете тогда, что делает шоколад?

Код ДНК трактуется, или «читается», в определенном направлении. Информация в одной цепи читается в противоположном направлении от другой цепи. Характер последовательности в цепях ДНК определяет, какие части ДНК необходимо выборочно прочитать и в каком направлении.


Каждая комбинация из трех последовательных нуклеотидных оснований (называемая кодоном) передает конкретные необходимые биохимические инструкции клетке. Так как существует 4 разных основания, число комбинаций последовательностей трех оснований равно 4x4x4, или 64. Таким образом, 64 различных кодона регулируют химический состав и функционирование клеток.



Ген представляет собой всю последовательность кодонов, которая содержит код синтеза одного функционального белка. Белок - это сложная молекула, состоящая из цепочки более простых строительных блоков, называемых аминокислотами. Структура конкретного белка определяется, главным образом, его уникальным последовательным рядом кодонов ДНК (триплетов оснований), содержащимся в конкретном гене. Каждый кодон ДНК (триплет оснований) вносит свой вклад в синтез белка в виде одной инструкции для синтеза молекулы данного белка. Команда кодона может выглядеть как одно из следующих указаний: (1) начать строить новую цепь белка; (2) добавить конкретную аминокислоту в цепь и (3) завершить синтез белковой цепи точно в этой позиции.

С помощью такого процесса генетический материал клеточного ядра (ДНК/гены) определяет деятельность, структуру и поведение как индивидуальных клеток, так и функциональных групп клеток (т. е. органов). На схеме «Молекулярная Генетика» (стр. 42) графически представлено, как создаются и формулируются инструкции ДНК для деятельности клеток.

Репликация ДНК

Молекула ДНК реплицируется (воспроизводит себя) путем создания точной копии своих двух цепей. Для того чтобы процесс начался, две цепи расщепляются посередине, как при «расстегивании молнии» (см. рис. 2). Структура каждой из раскрытых половин двойной спирали притягивает дополняющий ее (комплементарный) набор нуклеотидных оснований, чтобы сформировать две новые целые лестницы. Итак, цепь 1 отделяется от цепи 2; цепь 1 пристраивает к себе новую копию цепи 2; а цепь 2 пристраивает к себе новую копию цепи 1. При помощи этого механизма там, где изначально была одна двойная спираль, в итоге появляются две идентичные двойные спирали. Следует заметить, что многие модели последовательностей ДНК остались неизменными с момента зарождения жизни на нашей планете. "



Рисунок 2 . В двойной спирали ДНК аденин (А) всегда связывается с тимином (Т), а цитозин (С) всегда связывается с гуанином (G).


Для того чтобы ген осуществил процесс производства конкретного белка, он должен претерпеть транскрипцию. Сначала часть ДНК, составляющая конкретный ген, разворачивается. Затем «молния расстегивается» (происходит расщепление). Открытая расщепленная молекула ДНК притягивает необходимое число нуклеотидных оснований. Это создает новую дополнительную одиночную цепь, которая затем отрывается от отцовской ДНК (гена). Эта новая одиночная неспаренная цепь называется «информационной РНК» (иРНК, или мРНК).

После завершения этого процесса исходная ДНК снова закрывается, сворачивается и ждет следующего призыва к действию. Тем временем уникальная и отделившаяся мРНК перемещается в другое место в пределах этой же клетки или за пределы клетки для того, чтобы закончить работу по производству белка.

Когда окружающая среда является биохимически подходящей, неспаренные нуклеотидные основания этой уникальной мРНК начинают притягивать конкретные аминокислоты, чтобы построить новый белок (цепь аминокислот). На каждые три неспаренные нуклеотидные основания (кодона) молекулы мРНК в новую цепь добавляется одна конкретная аминокислота.

После того как все аминокислоты будут находиться на своем месте и в правильной последовательности, новая (белковая) цепь отрывается от мРНК. Теперь этот уникальный белок начинает функционировать в том качестве, для которого он был создан. Этот процесс является очень быстрым, точным и четким, причем происходит он миллионы раз в секунду по всему вашему телу.

Проект «Геном Человека» пытается расшифровать последовательность оснований во всей человеческой ДНК. Эту чрезвычайно объемную задачу по анализу и сбору данных взяла на себя многонациональная команда ученых, где каждый отвечает за исследование последовательности в порученной ему части ДНК. Считается, что за короткий период в три года весь геном человека может быть картирован полностью.

Полный комплект ДНК человека - это огромная база данных, содержащая примерно 3 миллиарда пар оснований. Уже картированы многие гены, относящиеся к конкретным хромосомам. По этим результатам были идентифицированы другие гены, но их точный хромосомный адрес пока еще не установлен.

Теломераза и теломеры

Теломераза - это недавно обнаруженный фермент, обладающий уникальными свойствами замедления старения. Теломераза синтезируется в клетке и непосредственно отвечает за стабильность и силу теломера - структурного белка, обнаруженного на концах нитей ДНК (это как бы колпачки, запечатывающие концы хромосом). При делении клеток теломеры могут быть утеряны или повреждены, что нарушает клеточное деление, обусловливает ненормальную репликацию клеток или даже полностью останавливает клеточное деление.

Внутри хромосомы ДНК находится в «сверхзакрученном» состоянии. Во время деления клетки концы ДНК могут запутаться, когда происходит разделение всех хромосом. Концы хромосом имеют особую последовательность, которая повторяется много раз для поддержания целостности хромосом во время деления. Теломераза восстанавливает силу теломера и увеличивает вероятность правильного деления клетки.


К сожалению, раковые клетки также образуют свою собственную теломеразу, что может стимулировать избыточное или бесконечное деление клеток. Для сравнения: нормальная клетка обычно перестает репродуцироваться после определенного числа делений. В каком- то смысле, раковые клетки бессмертны, то есть до того момента, пока они не раз рушат тот организм, который их питал. Продолжаются исследования по изысканию способов инактивации теломеразы в раковых клетках, это даст им сигнал перестать делиться.

Исследователи также хотят выяснить, как включать деятельность теломеразы в нормальных клетках. Когда это будет обнаружено, мы сможем замедлить или обратить вспять старение здоровых клеток. Восстановление теломеров до их полной длины переставит биологические часы. Результатом этого может стать продление человеческой жизни.

Человек не плетет сеть жизни, он - всего лишь одна нить в ней. Все, что он делает по отношению к этой сети, он делает и по отношению к самому себе.

(Вождь Сиэттл )

Некоторые данные о ДНК для размышления

Исследования космоса полностью соизмеримы с изучением ДНК и сознания. Вот некоторые доказанные данные, касающиеся ДНК:

1. Диаметр двойной спирали ДНК около 10 атомов шириной или, другими словами, 2 нанометра (один нанометр Л (нм) - это одна миллиардная метра).

2. Расстояние между нуклеотидами равно примерно 0,35 нм.

3. Длина одного полного генома составляет примерно 6 футов (1,8 метра).

4. Если в вашем теле содержится 75 триллионов клеток и ги вы бы решили вытянуть всю вашу ДНК в одну линию, то ею можно было бы опоясать Землю примерно 5 миллионов раз.

5. Если бы ширина вашей ДНК была 2 дюйма (5,08 см), то ваше тело было бы размером с Землю.

6. ДНК является источником излучения фотонов (света). Возможно, существует связь между излучением фотонов ДНК и сознанием.

7. Объем информации в двойной спирали ДНК настолько огромен, что она вмещает в себя 100 000 генов.

8. Внутри клеточного ядра весь этот объем ДНК свернут, занимая пространство всего в несколько тысячных миллиметра.

9. Ученые считают, что каждую секунду примерно один миллион красных кровяных клеток исчезает и замещается новыми. Каждая из этих клеток строится на основе негативного или позитивного мыслеобраза. Тело постоянно перестраивается.

10. Официальные источники говорят, что из 1 миллиарда пар оснований, последовательность которых была прослежена на сегодняшний день, 468 миллионов находятся в окончательно проверенной форме. Еще 665 миллионов находятся на компьютерной проверке. 11. Клетка - это первичный элемент, в котором содержится углерод, кислород, водород и азот. Она способна регенерировать себя. Мы постоянно обновляем наши тела. Каждые шесть недель мы регенерируем нашу печень, вкусовые рецепторы и даже ДНК. Мы обновляем себя менее чем за два с половиной года.

Молитва вождя племени лакота по имени Желтый Жаворонок

И чье дыхание дает жизнь всему миру,

Услышь меня!..

Я мал и слаб.

Я нуждаюсь в твоей силе и мудрости.

Позволь мне идти в Красоте и дай моим глазам

Узреть пурпурно-красный закат.

Сделай так, чтобы мои руки уважали

Все сотворенное тобой,

А мой слух был острым, чтобы слышать твой голос.

Сделай меня мудрым, чтобы я мог понять

То, чему ты можешь научить меня.

Дай мне пройти уроки, спрятанные тобой

В каждом листе и камне.

Я ищу силы не для того, чтобы быть выше

Брата моего. Но чтобы победить своего злейшего врага.

Самого себя.

Сделай так, чтобы я был всегда готов прийти к тебе

С чистыми руками и прямым взглядом,

Чтобы, когда моя жизнь начнет увядать

как догорающий закат,

Мой дух мог прийти к тебе без тени стыда.

user1062760

Отличается ли ДНК в каждом типе клеток? Какая ДНК передается потомству?

Наше тело содержит много разных типов клеток, и каждая из этих клеток имеет свою собственную ДНК (поправьте меня, если не так), как клетки кожи, свою собственную ДНК, которая делает их клетками кожи вместо мышечных клеток.

Поэтому мой вопрос в том, какую ДНК человек передает в сперму или яйцеклетку? Это специальный отпечаток ДНК, из которого может быть создано все наше тело?

Chris ♦

Нет, вы здесь не правы. Каждая клетка несет в себе полный набор геномной информации, она «только» по-разному выражается (зачитывается). Единственным исключением являются яйцеклетки и сперматозоиды, которые несут только половину набора хромосом (23 вместо 46), чтобы иметь возможность объединяться со своим аналогом.

клыкастой

При родах половые клетки объединяются, образуя зиготу из 23 + 23 = 46 хромосом. Эта зигота содержит обе хромосомы. Эти хромосомы влияют на различные вещи, такие как пол и т. Д.

fileunderwater

Внутри отдельного человека ДНК примерно одинакова в каждой клетке. Разные клетки образуются путем дифференциального использования этой ДНК : некоторые гены более (или менее) высокоэкспрессированы и т. Д. можно прочитать .

Вы наследуете одну копию каждой хромосомы от каждого родителя. Гамет (яйцеклетки и сперма) немного отличаются от обычных клеток, поскольку содержат одну копию каждой хромосомы; они гаплоидные . Эти гаметы сливаются, чтобы составить 23 пары в потомстве. Есть некоторые исключения, такие как цитоплазматическая ДНК и половые хромосомы.

fileunderwater

Для ясности (и из-за неправильных представлений в вопросе), я думаю, вы должны конкретно упомянуть клетки зародышевой линии (в отличие от соматических клеток) и то, как только клетки зародышевой линии используются для размножения.

Roland

Я думаю, вам также следует уточнить, что на самом деле передаются не родительские хромосомы (как показано на рисунке), а скорее мозаика их хромосом из-за мейоза / перехода.

user1062760

Итак, в двух словах, вы можете создать клон всего тела человека из ДНК любого типа?

iayork

@ user1062760 Ну, вы не можете сделать клон человека из любого типа клетки - это не было сделано, не известно как, и это не разрешено, по крайней мере, в западных странах. Но концепция верна; мыши могут быть клонированы, например, из клеток кожи (pnas.org/content/104/8/2738.full).

Кертис Марц

Генетика - это развивающаяся область:) Важны такие понятия, как горизонтальная передача генов, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379729/ Также могут рассматриваться границы «тела», например, очевидно. последовательности ДНК кишечной флоры отличаются от статистически значимой части ДНК соматических клеток человека, но разве кишечная флора не является неотъемлемой частью тела? Извините, что отвечаю на вопрос вопросом, но такова природа философии. Стоит отметить еще одну концепцию - микрохимеризм, яркий пример которого можно увидеть в содержании у самок небольшой популяции клеток головного мозга и других органов, которые содержат ДНК бывших половых партнеров; В частности, беременность часто приводит к горизонтальному переносу генов с явными эффектами https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458919/

Максим Кулешов

В идеале сама ДНК одинакова в типах клеток, содержащих ДНК. Тип клетки зависит от экспрессии, которая зависит от эпигенетики. Т.е. модификация гистонов, метилирование ДНК и несколько других механизмов.

Также эпигенетика является механизмом регуляции экспрессии генов. Например, он может заглушить (обычно, метилированные промоторные области) экспрессию генов на одной из хромосом в женских клетках. Это называется геномным импринтингом. У млекопитающих метки эпигенетики из гамет не удаляются после образования зиготы.

Chris ♦

Эпигенетика - это не только механизм подавления одной хромосомы у кошек. Это механизм, с помощью которого гены (и хромосомы) могут регулироваться специальными ферментами. Регулирование включает в себя активацию и глушение.

Я согласен с Крисом. Есть примеры, в которых генная сеть способна показывать несколько типов стабильных ответов (для двух видов это известно как бистабильность). Положительные отзывы, например, могут демонстрировать бистабильность без участия дополнительной эпигенетической регуляции. Однако, как вы сказали, эпигенетическая модификация необходима для поддержания дифференцированной линии (разновидность памяти, которая может быть унаследована). Так что было бы здорово, если бы вы могли улучшить свой ответ, а также добавить несколько ссылок.

Кертис Марц

Митохондриальная ДНК наследуется в основном от женской линии и происходит в основном из яйцеклеток. Митохондрии присутствуют во всех клетках, но сохраняют геномы, которые отличаются от ДНК организма-хозяина, почти как если бы они были отдельным единичным организмом. Вот интересный взгляд на митохондриальную ДНК.

ДНК является универсальным источником и хранителем наследственной информации, которая записана с помощью специальной последовательности нуклеотидов, она определяет свойства всех живых организмов.

Средняя молекулярная масса нуклеотида принимается равной 345, а количество нуклеотидных остатков может достигать нескольких сот, тысяч и даже миллионов. ДНК в основной своей массе находится в ядрах клеток. Немного содержится в хлоропластах и митохондриях. Однако ДНК ядра клетки - это не одна молекула. Она состоит из множества молекул, которые распределены по разным хромосомам, их количество меняется в зависимости от организма. Это и есть особенности строения ДНК.

История открытия ДНК

Строение и функции ДНК были открыты Джеймсом Уотсоном и Френсисом Криком, им даже была вручена Нобелевская премия в 1962 году.

Но впервые обнаружил нуклеиновые кислоты швейцарский ученый Фридрих Иоганн Мишер, работавший в Германии. В 1869 году он изучал животные клетки - лейкоциты. Для их получения использовал повязки с гноем, достававшиеся ему из больниц. Из гноя Мишер вымывал лейкоциты, а из них выделял белок. В ходе этих исследований ученому удалось установить, что в лейкоцитах кроме белков имеется еще что-то, какое-то неизвестное на тот момент вещество. Оно представляло собой нитевидный или хлопьевидный осадок, который выделялся, если создать кислую среду. Осадок сразу растворялся при добавлении щелочи.

Ученый с помощью микроскопа обнаружил, что при отмывании лейкоцитов с помощью соляной кислоты от клеток остаются ядра. Тогда он сделал заключение, что в ядре есть неизвестное вещество, названное им нуклеином (слово nucleus в переводе означает ядро).

Проведя химический анализ, Мишер выяснил, что новое вещество в своем составе имеет углерод, водород, кислород и фосфор. В то время фосфорорганических соединений было известно немного, поэтому Фридрих решил, что обнаружил новый класс соединений, находящихся в ядре клетки.

Таким образом, в XIX веке было открыто существование нуклеиновых кислот. Однако в то время никто не мог даже подумать о том, какая важная роль им принадлежит.

Вещество наследственности

Строение ДНК продолжали исследовать, и в 1944 году группа бактериологов под руководством Освальда Эвери получила доказательства того, что эта молекула заслуживает серьезного внимания. Ученый на протяжении многих лет занимался изучением пневмококков, организмов, которые вызывали пневмонию или заболевание легких. Эвери проводил опыты, смешивая пневмококки, вызывающие заболевание, с теми, которые безопасны для живых организмов. Сначала болезнетворные клетки убивали, а после добавляли к ним те, которые заболеваний не вызывают.

Результаты исследований поразили всех. Были такие живые клетки, которые после взаимодействия с мертвыми научались вызывать болезнь. Ученый выяснил природу вещества, которое участвует в процессе передачи информации живым клеткам от мертвых. Молекула ДНК и оказалась этим веществом.

Строение

Итак, необходимо разобраться с тем, какое строение имеет молекула ДНК. Открытие ее структуры стало значимым событием, это привело к образованию молекулярной биологии - новой отрасли биохимии. ДНК в больших количествах находится в ядрах клеток, однако размеры и количество молекул зависят от вида организма. Установлено, что ядра клеток млекопитающих содержат много этих клеток, они распределены по хромосомам, их насчитывается 46.

Изучая строение ДНК, в 1924 году Фельген впервые установил ее локализацию. Доказательства, полученные в ходе экспериментов, показали, что ДНК находится в митохондриях (1-2%). В других местах эти молекулы могут находиться при вирусной инфекции, в базальных тельцах, а также в яйцеклетках некоторых животных. Известно, что чем сложнее организм, тем масса ДНК больше. Количество молекул, находящихся в клетке, зависит от функции и составляет обычно 1-10%. Меньше всего их находится в миоцитах (0,2%), больше - в половых клетках (60%).

Строение ДНК показало, что в хромосомах высших организмов они связаны с простыми белками - альбуминами, гистонами и прочими, которые все вместе образуют ДНП (дезоксирибонуклеопротеид). Обычно большая молекула нестойкая, и для того чтобы она оставалась целой и неизменной в ходе эволюции, создана так называемая репарирующая система, которая состоит из ферментов - лигаз и нуклеаз, отвечающих за «ремонт» молекулы.

Химическое строение ДНК

ДНК является полимером, полинуклеотидом, состоящим из огромного числа (до десятков тысяч миллионов) мононуклеотидов. Строение ДНК имеет следующий вид: мононуклеотиды содержат азотистые основания - цитозин (Ц) и тимин (Т) - из производных пиримидинов, аденин (А) и гуанин (Г) - из производных пурина. Кроме азотистых оснований, в составе молекулы человека и животных имеется 5-метилцитозин — минорное пиримидиновое основание. С фосфорной кислотой и дезоксирибозой связываются азотистые основания. Схема строения ДНК продемонстрирована ниже.

Правила Чаргаффа

Строение и биологическая роль ДНК изучались Э. Чаргаффом в 1949 году. В ходе исследований он выявил закономерности, которые наблюдаются в количественном распределении азотистых оснований:

  1. ∑Т + Ц = ∑А + Г (то есть число пиримидиновых оснований равно числу пуриновых).
  2. Всегда количество остатков аденина равно количеству остатков тимина, а количество гуанина равно цитозину.
  3. Коэффициент специфичности имеет формулу: Г+Ц/А+Т. Например, у человека он равен 1,5, у быка - 1,3.
  4. Сумма "А + Ц" равна сумме "Г + Т", то есть аденина и цитозина имеется столько же, сколько гуанина и тимина.

Модель строения ДНК

Ее создали Уотсон и Крик. Остатки фосфатов и дезоксирибоз располагаются по хребту двух закрученных спиралеобразным образом полинуклеотидных цепей. Определено, что плоскостные структуры пиримидиновых и пуриновых оснований располагаются перпендикулярно оси цепи и образуют как бы ступени лестницы в виде спирали. Установлено также, что А всегда соединяется с Т при помощи двух водородных связей, а Г прикреплено к Ц уже тремя такими же связями. Этому явлению дали название "принцип избирательности и комплементарности".

Уровни структурной организации

Изогнутая как спираль полинуклеотидная цепь - это первичная структура, которая имеет определенный качественный и количественный набор мононуклеотидов, связанных 3’,5’-фосфодиэфирной связью. Таким образом, каждая из цепей имеет 3’-конец (дезоксирибоза) и 5’-конец (фосфатный). Участки, которые содержат в себе генетическую информацию, названы структурными генами.

Двухспиральная молекула - это вторичная структура. Причем ее полинуклеотидные цепи антипараллельны и связываются водородными связями между комплементарными основаниями цепей. Установлено, что в каждом витке этой спирали содержится 10 нуклеотидных остатков, длина ее равняется 3,4 нм. Эту структуру поддерживают также Ван-дер-Ваальсовы силы взаимодействия, которые наблюдаются между основаниями одной цепи, включающие отталкивающие и притягивающие компоненты. Эти силы объясняются взаимодействием электронов в соседних атомах. Электростатическое взаимодействие также стабилизирует вторичную структуру. Оно возникает между заряженными положительно молекулами гистонов и заряженной отрицательно нитью ДНК.

Третичная структура - это намотка цепей ДНК на гистоны или суперспирализация. Описано пять видов гистонов: Н1, Н2А, Н2В, Н3, Н4.

Укладка нуклеосом в хроматин - это четвертичная структура, поэтому молекула ДНК, имеющая длину несколько сантиметров, может складываться до 5 нм.

Функции ДНК

Основными функциями ДНК являются:

  1. Хранение наследственной информации. Последовательность аминокислот, находящихся в молекуле белка, определяется порядком, в котором расположены нуклеотидные остатки в молекуле ДНК. Также в ней зашифрована вся информация о свойствах и признаках организма.
  2. ДНК способна передавать наследственную информацию следующему поколению. Это возможно из-за способности к репликации - самоудвоению. ДНК способна распадаться на две комплементарные цепочки, и на каждой из них (в соответствии с принципом комплементарности) восстанавливается исходная последовательность нуклеотидов.
  3. При помощи ДНК происходит биосинтез белков, ферментов и гормонов.

Заключение

Строение ДНК позволяет ей являться хранителем генетической информации, а также передавать ее следующим поколениям. Какие есть особенности у этой молекулы?

  1. Стабильность. Это возможно благодаря гликозидным, водородным и фосфодиэфирным связям, а также механизму репарации индуцированных и спонтанных повреждений.
  2. Возможность репликации. Этот механизм позволяет в соматических клетках сохранять диплоидное число хромосом.
  3. Существование генетического кода. При помощи процессов трансляции и транскрипции последовательность оснований, находящихся в ДНК, преобразуется в последовательность аминокислот, находящихся в полипептидной цепи.
  4. Способность к генетической рекомбинации. При этом образуются новые сочетания генов, которые сцеплены между собой.

Таким образом, строение и функции ДНК позволяют ей играть неоценимую роль в организмах живых существ. Известно, что длина 46-ти молекул ДНК, находящихся в каждой клетке человека, равна почти 2 м, а число нуклеотидных пар составляет 3,2 млрд.

Невероятные факты

ДНК является схемой нашего тела, и без нее нас бы не было. Это молекула, которая содержит генетическую инструкцию для развития и продолжает функционировать в каждом живом организме.

ДНК есть в каждой клетке нашего организма, сообщая ей какие белки производить. ДНК в наших клетках мы наследуем от родителей, благодаря чему у нас много схожих черт.

Она имеет форму двойной спирали , похожей на огромную спиральную лестницу, и каждая ступень на этой лестнице состоит из пары нуклеотидов. Когда ДНК копируется, иногда возникают ошибки, и эти ошибки известны как мутации.

Вот несколько интересных фактов о ДНК, которые помогут вам лучше понять себя.

Молекула ДНК

1. Бделлоидные коловратки - это микроскопические животные, которые на протяжении 80 миллионов лет оставались исключительно самками. Они размножаются, заимствуя ДНК других животных.


2. Если бы вам пришлось ежедневно по 8 часов печатать по одному слову в секунду, вам бы потребовалось 50 лет, чтобы напечатать геном человека .



4. Если вы вдруг перенесете трансплантацию костного мозга, в ДНК вашей крови будет присутствовать ДНК донора , что в прошлом приводило к ложным арестам.


5. У родных братьев и сестер 50 % общих генов , как и у родителей с детьми.


6. ДНК повреждается около 1 миллиона раз за день в каждой клетке нашего тела. К счастью, у нашего организма существует сложная система ее восстановления. Если бы этого не было, это бы приводило к раку или гибели клеток.


7. Если дело касается беспозвоночных, то дождевые черви являются нашими ближайшими родственниками . У нас больше общего ДНК, чем с тараканами и даже осьминогами.


8. Согласно ученым, у четырех семей в Исландии обнаружено ДНК, встречающееся только у коренных американцев. Свидетельства указывают на то, что викинги привезли коренную американку обратно в Европу около 1000 лет назад.


9. На международной космической станции есть жесткий диск, названный "диск бессмертия ". Он содержит ДНК людей, таких как Лэнс Армстронг и Стивен Хокинг на случай всемирной катастрофы.

10. Брук Гринберг – девушка, которая всю жизнь выглядела, как ребенок, умерла в возрасте 20 лет. Ученые считают, что ее ДНК может стать ключом к биологическому бессмертию .


ДНК человека

11. Около 8 процентов нашей ДНК состоит из древних вирусов , которые когда-то инфицировали людей.


12. Согласно ДНК исследованию, полинезийцы посетили Чили в 1300-х годах и обогнали Колумба, ступив на землю Америки почти на 200 лет раньше.


13. Около 2 грамм ДНК могло бы вместить всю мировую информацию, хранимую в цифровом виде .


14. Ученые записали песню из диснеевского мультфильма ("It"s A Small World After All") в ДНК бактерии , которая устойчива к радиоактивности, чтобы на случай ядерной катастрофы люди в будущем или другие формы жизни смогли ее найти.


15. Замбийского врача Джона Шнеебергера обвинили в сексуальном насилии. Он имплантировал себе трубку с кровью другого человека, и когда у него брали кровь на ДНК, он смог обмануть специалистов. В конце концов, его все же удалось задержать.


16. ДНК людей на 99,9 процентов одинаковы . Отличия составляют последние 0,1 процент.


17. Генетическое содержание яйцеклетки можно заменить ДНК мужчины и затем оплодотворить сперматозоидом. Таким образом, двое мужчин могу стать родителями ребенка.


18. ДНК во всех ваших клетках могут растянуться на 16 миллиардов километров , если ее раскрутить. Это примерно расстояние от Земли до Плутона и обратно.


19. Хотя существуют сайты, предлагающие генетические тесты по слюне, подтверждающие ваше происхождение, ученые предупреждают, что это своего рода "генетическая астрология", и ее не стоит воспринимать серьезно.


20. 50 процентов вашего ДНК сходно с ДНК банана .


21. Ученые определили, что период полураспада ДНК составляет 521 год, а через 1,5 миллиона лет даже ДНК, сохраненное в лучшем виде, нельзя будет прочесть.


22. Из-за разрушения ДНК маловероятно, что мы когда-нибудь сможем клонировать динозавров или других доисторических животных.


23. Немецкая полиция однажды взяла образцы ДНК во время ювелирного ограбления. Образцы указали на близнецов Хассана и Аббаса О. Оба отрицали причастность к преступлению, несмотря на то, что полиция знала о том, что один из них совершил преступление.

Они не смогли определить, кто же из них его совершил, так как ДНК было практически идентичным, а по закону Германии подозреваемых нельзя было держать неопределенный срок. Таким образом, у полиции не было другого выбора, как отпустить подозреваемых.


24. У всех людей неафриканского происхождения есть следы ДНК неандертальцев .


25. В ходе Проекта глубинного захоронения Хорнслета датского художника Кристиана фон Хорнслета в 2013 году в глубочайшее место океана была опущена капсула времени . Капсула содержала образцы крови, волос и ДНК животных. Целью проекта стало сохранение ДНК, чтобы в будущем можно было вернуть к жизни вымершие виды.


Что значит ДНК

Что значит ДНК