Радиационный и тепловой балансы. Радиационный и тепловой баланс земли Состав теплового баланса земной поверхности

Тепловой баланс системы Земля-атмосфера

1. Земля в целом, атмосфера в отдельности и земная поверхность находятся в состоянии теплового равновесия, если рассматривать условия за длительный период (год или, лучше, ряд лет). Средние температуры их от года к году изменяются мало, а от одного многолетнего периода к другому остаются почти неизменными. Отсюда следует, что приток и отдача тепла за достаточно длительный период равны или почти равны.

Земля получает тепло, поглощая солнечную радиацию в атмосфере и особенно на земной поверхности. Теряет она тепло путем излучения в мировое пространство длинноволновой радиации земной поверхности и атмосферы. При тепловом равновесии Земли в целом приток солнечной радиации (на верхнюю границу атмосферы) и отдача радиации с верхней границы атмосферы в мировое пространство должны быть равными. Иначе говоря, на верхней границе атмосферы должно существовать лучистое равновесие, т. е. радиационный баланс, равный нулю.

Атмосфера, отдельно взятая, получает и теряет тепло, поглощая солнечную и земную радиацию и отдавая свою радиацию вниз и вверх. Кроме того, она обменивается теплом с земной поверхностью нерадиационным путем. Тепло переносится от земной поверхности в воздух или обратно путем теплопроводности. Наконец, тепло затрачивается на испарение воды с подстилающей поверхности; затем оно освобождается в атмосфере при конденсации водяного пара. Все указанные потоки тепла, направленные в атмосферу и из атмосферы, за длительное время должны уравновешиваться.

Рис. 37. Тепловой баланс Земли, атмосферы и земной поверхности. 1 - коротковолновая радиация, II -длинноволновая радиация, III - нерадиационый обмен.

Наконец, на земной поверхности уравновешиваются приток тепла вследствие поглощения солнечной и атмосферной радиации, отдача тепла путем излучения самой земной поверхности и нерадиационный обмен теплом между ней и атмосферой.

2. Примем солнечную радиацию, входящую в атмосферу, за 100 единиц (рис. 37). Из этого количества 23 единицы отражаются обратно облаками и уходят в мировое пространство, 20 единиц поглощаются воздухом и облаками и тем самым идут на нагревание атмосферы. Еще 30 единиц радиации рассеиваются в атмосфере и из них 8 единиц уходят в мировое пространство. 27 единиц прямой и 22 единицы рассеянной радиации доходят до земной поверхности. Из них 25 + 20 = 45 единиц поглощаются и нагревают верхние слои почвы и воды, а 2 + 2 = 4 единицы отражаются в мировое пространство.

Итак, с верхней границы атмосферы уходит обратно в мировое пространство 23 + 8 + 4 = 35 единиц <неиспользованной> солнечной радиации, т. е. 35 % ее притока на границу атмосферы. Эту величину (35%) называют, как мы уже знаем, альбедо Земли. Для сохранения радиационного равновесия на верхней границе атмосферы необходимо, чтобы через нее наружу уходило еще 65 единиц длинноволнового излучения земной поверхности.

3. Обратимся теперь к земной поверхности. Как уже было сказано, она поглощает 45 единиц прямой и рассеянной солнечной радиации. Кроме того, к земной поверхности направлен поток длинноволнового излучения из атмосферы. Атмосфера соответственно своим температурным условиям излучает 157 единиц энергии. Из этих 157 единиц 102 направлены к земной поверхности и поглощаются ею, а 55 уходят в мировое пространство. Таким образом, кроме 45 единиц коротковолновой солнечной радиации, земная поверхность поглощает еще вдвое большее количество длинноволновой атмосферной радиации. Всего же земная поверхность получает от поглощения радиации 147 единиц тепла.

Очевидно, что при тепловом равновесии она должна столько же и терять. Путем собственного длинноволнового излучения она теряет 117 единиц. Еще 23 единицы тепла расходуются земной поверхностью при испарении воды. Наконец, путем теплопроводности в процессе теплообмена между земной поверхностью и атмосферой поверхность теряет 7 единиц тепла (тепло уходит от нее в атмосферу в больших количествах, но компенсируется обратной передачей, которая только на 7 единиц меньше).

Всего, таким образом, земная поверхность теряет 117 + 23 + + 7=147 единиц тепла, т. е. столько же, сколько получает, поглощая солнечную и атмосферную радиацию.

Из 117 единиц длинноволнового излучения земной поверхностью 107 единиц поглощаются атмосферой, а 10 единиц уходят за пределы атмосферы в мировое пространство.

4. Теперь сделаем подсчет для атмосферы. Выше сказано, что она поглощает 20 единиц солнечной радиации, 107 единиц земного излучения, 23 единицы тепла конденсации и 7 единиц в процессе теплообмена с земной поверхностью. Всего это составит 20+107 + 23 + 7=157 единиц энергии, т. е. столько же, сколько атмосфера сама излучает.

Наконец, снова обратимся к верхней поверхности атмосферы. Через нее приходит 100 единиц солнечной радиации и уходит обратно 35 единиц отраженной и рассеянной солнечной радиации, 10 единиц земного излучения и 55 единиц атмосферного излучения, а всего 100 единиц. Таким образом, и на верхней границе атмосферы существует равновесие между притоком и отдачей энергии, притом здесь.- только лучистой энергии. Никаких других механизмов обмена тепла между Землей и мировым пространством, кроме радиационных процессов, не существует.

Все приведенные цифры подсчитаны на основе отнюдь не исчерпывающих наблюдений. Поэтому на них не нужно смотреть как на абсолютно точные. Они не раз подвергались небольшим изменениям, не меняющим, однако, существа расчета.

5. Обратим внимание, что атмосфера и земная поверхность, по отдельности взятые, излучают гораздо больше тепла, чем за то же время поглощают солнечной радиации. Это может показаться непонятным. Но по существу дела это взаимный обмен, взаимная <перекачка> радиации. Например, земная поверхность теряет в конечном счете вовсе не 117 единиц радиации, 102 единицы она получает обратно, поглощая встречное излучение; чистая потеря равна только 117-102=15 единицам. Лишь 65 единиц земной и атмосферной радиации уходят через верхнюю границу атмосферы в мировое пространство. Приток 100 единиц солнечной радиации на границу атмосферы как раз и уравновешивает чистую потерю радиации Землей путем отражения (35) и излучения (65).



Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.[ ...]

Под действием падающего солнечного потока в результате его поглощения земная поверхность нагревается и становится источником длинноволнового (ДВ) излучения, направленного к атмосфере. Атмосфера, с другой стороны, также является источником ДВ излучения, направленного к Земле (так называемое противоизлучение атмосферы). При этом возникает взаимный теплообмен между земной поверхностью и атмосферой. Разность между КВ излучением, поглощенным земной поверхностью и эффективным излучением называется радиационным балансом. Преобразование энергии КВ солнечной радиации при поглощении ее земной поверхностью и атмосферой, теплообмен между ними составляют тепловой баланс Земли.[ ...]

Главной особенностью радиационного режима атмосферы является парниковый эффект, который заключается в том, что КВ радиация большей частью доходит до земной поверхности, вызывая ее нагрев, а ДВ излучение от Земли задерживается атмосферой, уменьшая при этом теплоотдачу Земли в космос. Атмосфера является своего рода теплоизолирующей оболочкой, которая препятствует охлаждению Земли. Увеличение процентного содержания С02, паров Н20, аэрозолей и т. п. будет усиливать парниковый эффект, что приводит к увеличению средней температуры нижнего слоя атмосферы и потеплению климата. Основным источником теплового излучения атмосферы является земная поверхность.[ ...]

Интенсивность солнечного излучения, поглощенного земной поверхностью и атмосферой составляет 237 Вт/м2, из них 157 Вт/м2 поглощается земной поверхностью, а 80 Вт/м2 - атмосферой. Тепловой баланс Земли в общем виде представлен на рис. 6.15.[ ...]

Радиационный баланс земной поверхности составляет 105 Вт/м2, а эффективное излучение с нее равно разности поглощенной радиаций и радиационного баланса и составляет 52 Вт/м2. Энергия радиационного баланса затрачивается на турбулентный теплообмен Земли с атмосферой, что составляет 17 Вт/м2, и на процесс испарения воды, что составляет 88 Вт/м2.[ ...]

Схема теплообмена атмосферы представлена на рис. 6.16. Как видно из этой схемы, атмосфера получает тепловую энергию от трех источников: от Солнца, в виде поглощенного КВ излучения с интенсивностью примерно 80 Вт/м2; теплоты от конденсации водяного пара, приходящей от земной поверхности и равной 88 Вт/м2; турбулентного теплообмена между Землей и атмосферой (17 Вт/м2).[ ...]

Сумма составляющих теплообмена (185 Вт/м), равна тепловым потерям атмосферы в виде ДВ излучения в космическое пространство. Незначительная часть падающего солнечного излучения, которая существенно меньше приведенных составляющих теплового баланса, расходуется на другие процессы, происходящие в атмосфере.[ ...]

Разность испарений с континентов и поверхностей морей и океанов компенсируется за счет процессов массообмена водяных паров посредством воздушных течений и стока рек, впадающих в водные акватории земного шара.

Понятие о термобарическом поле Земли

Сезонные колебания радиационного баланса

Сезонные колебания радиационного режима Земли в целом соответствуют изменениям облучения северного и южного полушарий при годовом обращении Земли вокруг Солнца.

В экваториальном поясе сезонных колебаний солнечного тепла нет: и в декабре, и в июле радиационный баланс равен 6-8 ккал/см 2 на суше и 10-12 ккал/см 2 на море в месяц.

В тропических поясах уже достаточно отчетливо выражены сезонные колебания. В Северном полушарии – в Северной Африке, Южной Азии и Центральной Америке – в декабре радиационный баланс равен 2-4 ккал/см 2 , а в июне 6-8 ккал/см 2 в месяц. Такая же картина наблюдается и в Южном полушарии: радиационный баланс выше в декабре (лето), ниже в июне (зима).

Во всем умеренном поясе в декабре к северу от субтропиков (нулевая линия баланса проходит через Францию, Среднюю Азию и остров Хоккайдо) баланс отрицательный. В июне даже близ полярного круга радиационный баланс равен 8 ккал/см 2 в месяц. Наибольшая амплитуда радиационного баланса свойственна материковому Северному полушарию.

Тепловой режим тропосферы определяется как поступлением солнечного тепла, так и динамикой воздушных масс, осуществляющей адвекцию тепла и холода. С другой стороны, само движение воздуха вызывается температурным градиентом (падением температуры на единицу расстояния) между экваториальными и полярными широтами и между океанами и материками. В результате этих сложных динамических процессов сформировалось термобарическое поле Земли. Оба его элемента – температура и давление – настолько взаимосвязаны, что это в географии принято говорить о едином термобарическом поле Земли.

Тепло, получаемое земной поверхностью, преобразуется и перераспределяется атмосферой и гидросферой. Тепло расходуется главным образом на испарение, турбулентный теплообмен и на перераспределение тепла между сушей и океаном.

Наибольшее количество тепла расходуется на испарение воды с океанов и материков. В тропических широтах океанов на испарение затрачивается примерно 100-120 ккал/см 2 в год, а в акваториях с теплыми течениями до 140 ккал/см 2 в год, что соответствует испарению слоя воды в 2 м мощностью. В экваториальном поясе на испарение затрачивается значительно меньше энергии, то есть примерно 60 ккал/см 2 в год; это равносильно испарению однометрового слоя воды.

На материках максимальные затраты тепла на испарение приходятся на экваториальную зону с ее влажным климатом. В тропических широтах суши расположены пустыни с ничтожным испарением. В умеренных широтах затраты тепла на испарение в океанах в 2,5 раза больше, чем на суше. Поверхность океана поглощает от 55 до 97 % всей радиации, падающей на него. На всей планете на испарение расходуется 80%, а на турбулентный теплообмен около 20 % солнечной радиации.



Тепло, затраченное на испарение воды, передается атмосфере при конденсации пара в виде скрытой теплоты парообразования. Этот процесс выполняет главную роль в нагревании воздуха и движении воздушных масс.

Максимальное для всей тропосферы количество тепла от конденсации водяного пара получают экваториальные широты - примерно 100-140 ккал/см 2 в год. Это объясняется поступлением сюда огромного количества влаги, приносимой пассатами из тропических акваторий, и поднятием воздуха над экватором. В сухих тропических широтах количество скрытой теплоты парообразования, естественно, ничтожно: менее 10 ккал/см 2 в год в материковых пустынях и около 20 ккал/см 2 в год над океанами. Решающую роль в тепловом и динамическом режиме атмосферы играет вода.

Радиационное тепло поступает в атмосферe также через турбулентный теплообмен воздуха. Воздух – плохой проводник тепла, поэтому молекулярная теплопроводность может обеспечить нагрев только незначительного (единицы метров) нижнего слоя атмосферы. Тропосфера нагревается путем турбулентного, струйного, вихревого перемешивания: воздух нижнего, прилегающего к земле слоя, нагревается, струями поднимается, на его место опускается верхний холодный воздух, который тоже нагревается. Таким образом тепло быстро передается от почвы воздуху, от одного слоя к другому.

Турбулентный поток тепла больше над материками и меньше над океанами. Максимального значения он достигает в тропических пустынях, до 60 ккал/см 2 в год, в экваториальной и субтропических зонах снижается до 30-20 ккал/см 2 , а в умеренных – 20-10 ккал/см 2 в год. На большей площади океанов вода отдает атмосфере около 5 ккал/см 2 в год, и только в субполярных широтах воздух от Гольфстрима и Куросиво получает тепла до 20-30 ккал/см 2 в год.

В отличие от скрытой теплоты парообразования турбулентный поток атмосферой удерживается слабо. Над пустынями он передается вверх и рассеивается, поэтому пустынные зоны и выступают как области охлаждения атмосферы.

Тепловой режим континентов в связи с их географическим положением различен. Затраты тепла на испарение на северных материках определяется их положением в умеренном поясе; в Африке и Австралии – аридностью их значительных площадей. На всех океанах огромная доля тепла затрачивается на испарение. Затем часть этого тепла переносится на материки и утепляет климат высоких широт.

Анализ теплообмена между поверхностью материков и океанов позволяет сделать следующие выводы:

1. В экваториальных широтах обоих полушарий атмосфера получает от нагретых океанов тепла до 40 ккал/см 2 в год.

2. От материковых тропических пустынь тепла в атмосферу практически не поступает.

3. Линия нулевого баланса проходит по субтропикам, близ 40 0 широты.

4. В умеренных широтах расход тепла излучением больше поглощенной радиации; это значит, что климатическая температура воздуха умеренных широт определяется не солнечным, а адвективным (принесенным из низких широт) теплом.

5. Радиационный баланс Земля-Атмосфера диссиметричен относительно плоскости экватора: в полярных широтах северного полушария он достигает 60, а в соответствующих южных – только 20 ккал/см 2 в год; тепло переносится в северное полушарие интенсивнее, чем в южное, приблизительно в 3 раза. Балансом системы Земля-атмосфера определяется температура воздуха.

8.16.Нагревание и охлаждение атмосферы в процессе взаимодействия системы «океан-атмосфера-материки»

Поглощение солнечных лучей воздухом дает не более 0,1 0 С тепла нижнему километровому слою тропосферы. Непосредственно от Солнца атмосфера получает не более 1/3 тепла, а 2/3 она усваивает от земной поверхности и, прежде всего, от гидросферы, которая передает ей тепло через водяной пар, испарившийся с поверхности водной оболочки.

Солнечный лучи, прошедшие через газовую оболочку планеты, в большинстве мест земной поверхности встречают воду: на океанах, в водоемах и болотах суши, во влажной почве и в листве растений. Тепловая энергия солнечной радиации расходуется прежде всего на испарение. Количество тепла, затрачиваемое на единицу испаряющейся воды, называется скрытой теплотой парообразования. При конденсации пара теплота парообразования поступает в воздух и нагревает его.

Усвоение солнечного тепла водоемами отличается от нагревания суши. Теплоемкость воды примерно в 2 раза больше, чем почвы. При одинаковом количестве тепла вода нагревается вдвое слабее, чем почвы. При охлаждении соотношение обратное. Если на теплую океанскую поверхность проникает холодная воздушная масса, то тепло проникает в слой до 5 км. Прогревание тропосферы обязано скрытой теплоте парообразования.

Турбулентное перемешивание воздуха (беспорядочное, неравномерное, хаотическое) создает конвекционные токи, интенсивность и направление которых зависят от характера местности и общепланетарной циркуляции воздушных масс.

Понятие об адиабатическом процессе. Важная роль в тепловом режиме воздуха принадлежит адиабатическому процессу.

Понятие об адиабатическом процессе. Важнейшая роль в тепловом режиме атмосферы принадлежит адиабатическому процессу. Адиабатическое нагревание и охлаждение воздуха происходит в одной массе, без обмена теплом с другими средами.

При опускании воздуха из верхних или средних слоев тропосферы или по склонам гор он из разряженных слоев поступает в более плотные, молекулы газа сближаются, их соударения усиливаются и кинетическая энергия движения молекул воздуха переходит в тепловую. Воздух нагревается, не получая тепло ни от других воздушных масс, ни от земной поверхности. Адиабатическое нагревание происходит, например, в тропическом поясе, над пустынями и над океанами в этих же широтах. Адиабатическое нагревание воздуха сопровождается его иссушением (что является главной причиной образования пустынь в тропическом поясе).

В восходящих токах воздух адиабатически охлаждается. Из плотной нижней тропосферы он поднимается в разряженную среднюю и верхнюю. При этом плотность его уменьшается, молекулы одна от другой удаляются, сталкиваются реже, тепловая энергия, полученная воздухом от нагретой поверхности, переходит в кинетическую, тратится на механическую работу на расширение газа. Этим объясняется охлаждение воздуха при поднятии.

Сухой воздух адиабатически охлаждается на 1 0 С на 100 м подъема, это – адиабатический процесс. Однако природный воздух содержит водяной пар, при конденсации которого выделяется тепло. Поэтому фактически температура падает на 0,6 0 С на 100 м (или на 6 0 С на 1 км высоты). Это влажно-адиабатический процесс.

При опускании и сухой и влажный воздух нагреваются одинаково, поскольку при этом конденсации влаги не происходит и скрытая теплота парообразования не выделяется.

Наиболее отчетливо типичные черты теплового режима суши проявляются в пустынях: большая доля солнечной радиации отражается от светлой их поверхности, тепло не расходуется на испарение, и идет на нагревание сухих горных пород. От них днем воздух нагревается до высоких температур. В сухом воздухе тепло не задерживается и беспрепятственно излучается в верхнюю атмосферу и межпланетное пространство. Пустыни для атмосферы в планетарном масштабе также служат окнами охлаждения.

ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ

баланс Земли, соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля - атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является солнечная радиация, поэтому распределение и соотношение составляющих Т. б. характеризуют её преобразования в этих оболочках.

Т. б. представляют собой частные формулировки закона сохранения энергии и составляются для участка поверхности Земли (Т. б. земной поверхности); для вертикального столба, проходящего через атмосферу (Т. б. атмосферы); для такого же столба, проходящего через атмосферу и верхние слои литосферы или гидросферу (Т. б. системы Земля - атмосфера).

Уравнение Т. б. земной поверхности: R + P + F0 + LE 0 представляет собой алгебраическую сумму потоков энергии между элементом земной поверхности и окружающим пространством. В число этих потоков входит радиационный баланс (или остаточная радиация) R - разность между поглощённой коротковолновой солнечной радиацией и длинноволновым эффективным излучением с земной поверхности. Положительная или отрицательная величина радиационного баланса компенсируется несколькими потоками тепла. Так как температура земной поверхности обычно не равна температуре воздуха, то между подстилающей поверхностью и атмосферой возникает поток тепла Р. Аналогичный поток тепла F 0 наблюдается между земной поверхностью и более глубокими слоями литосферы или гидросферы. При этом поток тепла в почве определяется молекулярной теплопроводностью, тогда как в водоёмах теплообмен, как правило, имеет в большей или меньшей степени турбулентный характер. Поток тепла F 0 между поверхностью водоёма и его более глубокими слоями численно равен изменению теплосодержания водоёма за данный интервал времени и переносу тепла течениями в водоёме. Существенное значение в Т. б. земной поверхности обычно имеет расход тепла на испарение LE, который определяется как произведение массы испарившейся воды Е на теплоту испарения L. Величина LE зависит от увлажнения земной поверхности, её температуры, влажности воздуха и интенсивности турбулентного теплообмена в приземном слое воздуха, которая определяет скорость переноса водяного пара от земной поверхности в атмосферу.

Уравнение Т. б. атмосферы имеет вид: Ra + Lr + P + Fa D W.

Т. б. атмосферы слагается из её радиационного баланса R a ; прихода или расхода тепла Lr при фазовых преобразованиях воды в атмосфере (г - сумма осадков); прихода или расхода тепла Р, обусловленного турбулентным теплообменом атмосферы с земной поверхностью; прихода или расхода тепла F a, вызванного теплообменом через вертикальные стенки столба, который связан с упорядоченными движениями атмосферы и макротурбулентностью. Кроме того, в уравнение T. б. атмосферы входит член DW, равный величине изменения теплосодержания внутри столба.

Уравнение Т. б. системы Земля - атмосфера соответствует алгебраической сумме членов уравнений Т. б. земной поверхности и атмосферы. Составляющие Т. б. земной поверхности и атмосферы для различных районов земного шара определяются путём метеорологических наблюдений (на актинометрических станциях, на специальных станциях Т. б., на метеорологических спутниках Земли) или путём климатологических расчётов.

Средние широтные величины составляющих Т. б. земной поверхности для океанов, суши и Земли и Т. б. атмосферы приведены в таблицах 1, 2, где величины членов Т. б. считаются положительными, если соответствуют приходу тепла. Так как эти таблицы относятся к средним годовым условиям, в них не включены члены, характеризующие изменения теплосодержания атмосферы и верхних слоев литосферы, поскольку для этих условий они близки к нулю.

Для Земли как планеты, вместе с атмосферой, схема Т. б. представлена на рис. На единицу поверхности внешней границы атмосферы поступает поток солнечной радиации, равный в среднем около 250 ккал/см 2 в год, из которых около отражается в мировое пространство, а 167 ккал/см 2 в год поглощает Земля (стрелка Q s на рис.). Земной поверхности достигает коротковолновая радиация, равная 126 ккал/см 2 в год; 18 ккал/см 2в год из этого количества отражается, а 108 ккал/см 2 в год поглощается земной поверхностью (стрелка Q). Атмосфера поглощает 59 ккал/см 2 в год коротковолновой радиации, то есть значительно меньше, чем земная поверхность. Эффективное длинноволновое излучение поверхности Земли равно 36 ккал/см 2 в год (стрелка I) , поэтому радиационный баланс земной поверхности равен 72 ккал/см 2 в год. Длинноволновое излучение Земли в мировое пространство равно 167 ккал/см 2 в год (стрелка Is) . Таким образом, поверхность Земли получает около 72 ккал/см 2 в год лучистой энергии, которая частично расходуется на испарение воды (кружок LE) и частично возвращается в атмосферу посредством турбулентной теплоотдачи (стрелка Р) .

Табл. 1 . - Тепловой баланс земной поверхности, ккал/см 2 год

Широта, градусы

Земля в среднем

70-60 северной широты

0-10 южной широты

Земля в целом

Данные о составляющих Т. б. используются при разработке многих проблем климатологии, гидрологии суши, океанологии; они применяются для обоснования численных моделей теории климата и для эмпирической проверки результатов применения этих моделей. Материалы о Т. б. играют большую роль в изучении изменений климата, их применяют также в расчётах испарения с поверхности речных бассейнов, озёр, морей и океанов, в исследованиях энергетического режима морских течений, для изучения снежных и ледяных покровов, в физиологии растений для исследования транспирации и фотосинтеза, в физиологии животных для изучения термического режима живых организмов. Данные о Т. б. были использованы и для изучения географической зональности в работах советского географа А. А. Григорьева.

Табл. 2 . - Тепловой баланс атмосферы, ккал/см 2 год

Широта, градусы

70-60 северной широты

0-10 южной широты

Земля в целом

Лит.: Атлас теплового баланса земного шара, под ред. М. И. Будыко, М., 1963; Будыко М. И., Климат и жизнь, Л., 1971; Григорьев А. А., Закономерности строения и развития географической среды, М., 1966.

М. И. Будыко.

Большая советская энциклопедия, БСЭ. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ТЕПЛОВОЙ БАЛАНС ЗЕМЛИ в русском языке в словарях, энциклопедиях и справочниках:

  • ЗЕМЛИ
    СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ - земли, предоставленные для нужд сельского хозяйства или предназначенные для этих …
  • ЗЕМЛИ в Словаре экономических терминов:
    РЕКРЕАЦИОННОГО НАЗНАЧЕНИЯ - выделенные в установленном порядке земли, предназначенные и используемые для организованного массового отдыха и туризма населения. К ним …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПРИРОДООХРАННОГО НАЗНАЧЕНИЯ - земли заказников (за исключением охотничьих) ; запретных и нерестоохранных полос; земли, занятые лесами, выполняющими защитные функции; другие …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПРИРОДНО-ЗАПОВЕДНОГО ФОНДА - земли заповедников, памятников природы, природных (национальных) и дендрологических, ботанических садов. В состав З.п.-з.ф. включаются земельные участки с …
  • ЗЕМЛИ в Словаре экономических терминов:
    ПОРЧА - см. ПОРЧА ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ОЗДОРОВИТЕЛЬНОГО НАЗНАЧЕНИЯ - земельные участки, обладающие природными лечебными факторами (минеральными источниками, залежами лечебных грязей, климатическими и другими условиями) , благоприятными …
  • ЗЕМЛИ в Словаре экономических терминов:
    ОБЩЕГО ПОЛЬЗОВАНИЯ - в городах, поселках и сельских населенных пунктах - земли, используемые в качестве путей сообщения (площади, улицы, переулки, …
  • ЗЕМЛИ в Словаре экономических терминов:
    НОРМАТИВНАЯ ЦЕНА - см НОРМАТИВНАЯ ЦЕНА ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    НАСЕЛЕННЫХ ПУНКТОВ - см ГОРОДСКИЕ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    МУНИЦИПАЛИЗАЦИЯ - см МУНИЦИПАЛИЗАЦИЯ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЛЕСНОГО ФОНДА - земли, покрытые лесом, а тж. не покрытые лесом, но предоставленные для нужд лесного хозяйства и лесной …
  • ЗЕМЛИ в Словаре экономических терминов:
    ИСТОРИКО-КУЛЬТУРНОГО НАЗНАЧЕНИЯ - земли, на которых (и в которых) располагаются памятники истории и культуры, достопримечательные места, в том числе объявленные …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЗАПАСА - все земли, не предоставленные в собственность, владение, пользование и аренду К ним тж. относятся земли, право собственности, владения …
  • ЗЕМЛИ в Словаре экономических терминов:
    ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА - земли федерального значения, предоставляемые безвозмездно в постоянное (бессрочное) пользование предприятиям и учреждениям железнодорожного транспорта для осуществления возложенных …
  • ЗЕМЛИ в Словаре экономических терминов:
    ДЛЯ НУЖД ОБОРОНЫ - земли, предоставленные для размещения и постоянной деятельности войсковых частей, учреждений, военно-учебных заведений, предприятий и организаций Вооруженных …
  • ЗЕМЛИ в Словаре экономических терминов:
    ГОРОДСКИЕ - см. ГОРОДСКИЕ ЗЕМЛИ …
  • ЗЕМЛИ в Словаре экономических терминов:
    ВОДНОГО ФОНДА - земли, занятые водоемами, ледниками, болотами, за исключением тундровой и лесотундровой зон, гидротехническими и другими водохозяйственными сооружениями; а …
  • БАЛАНС в Словаре экономических терминов:
    ТРУДОВЫХ РЕСУРСОВ - баланс наличия и использования трудовых ресурсов, составленный с учетом их пополнения и выбытия, сферы занятости, производительности …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ ПАССИВНЫЙ - см ПАССИВНЫЙ ТОРГОВЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ АКТИВНЫЙ - см АКТИВНЫЙ ТОРГОВЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ТОРГОВЫЙ - см ТОРГОВЫЙ БАЛАНС; ВНЕШНЕТОРГОВЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ТЕКУЩИХ ОПЕРАЦИЙ - баланс, показывающий чистый экспорт государства, равный объему экспорта товаров и услуг за вычетом импорта с добавлением чистого …
  • БАЛАНС в Словаре экономических терминов:
    СВОДНЫЙ - см. СВОДНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    САЛЬДОВЫЙ - см. САЛЬДОВЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    РАСЧЕТНЫЙ - см РАСЧЕТНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    РАЗДЕЛИТЕЛЬНЫЙ - см РАЗДЕЛИТЕЛЬНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    РАБОЧЕГО ВРЕМЕНИ - баланс, характеризующий ресурсы рабочего времени работников предприятия и их использование на разные виды работ. Представляется в виде …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ТЕКУЩИЙ см БАЛАНС ТЕКУЩИХ ОПЕРАЦИЙ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ПО ТЕКУЩИМ ОПЕРАЦИЯМ - см. ПЛАТЕЖНЫЙ БАЛАНС ПО ТЕКУЩИМ ОПЕРАЦИЯМ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ПАССИВНЫЙ. см. ПАССИВНЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ ВНЕШНЕТОРГОВЫЙ - см ВНЕШНЕТОРГОВЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ АКТИВНЫЙ - см АКТИВНЫЙ ПЛАТЕЖНЫЙ БАЛАНС …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖНЫЙ - см ПЛАТЕЖНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ПЛАТЕЖЕЙ ПО КЛИРИНГОВЫМ РАСЧЕТАМ - баланс безналичных расчетов по платежным обязательствам или взаимным требованиям …
  • БАЛАНС в Словаре экономических терминов:
    ПАССИВНЫЙ ТОРГОВЫЙ (ПЛАТЕЖНЫЙ) - см ПАССИВНЫЙ ТОРГОВЫЙ (ПЛАТЕЖНЫЙ) …
  • БАЛАНС в Словаре экономических терминов:
    ОСНОВНЫХ СРЕДСТВ - баланс, в котором сопоставляются наличные основные средства с учетом их износа и выбытия и вновь вводимые средства …
  • БАЛАНС в Словаре экономических терминов:
    МЕЖОТРАСЛЕВОЙ - см. МЕЖОТРАСЛЕВОЙ …
  • БАЛАНС в Словаре экономических терминов:
    МАТЕРИАЛЬНЫЙ - см МАТЕРИАЛЬНЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ЛИКВИДАЦИОННЫЙ - см ЛИКВИДАЦИОННЫЙ …
  • БАЛАНС в Словаре экономических терминов:
    ДОХОДОВ И РАСХОДОВ - финансовый баланс, в разделах которого указаны источники и величины доходов и расходов в течение определенного периода …
  • БАЛАНС в Большой советской энциклопедии, БСЭ:
    (франц. balance, буквально - весы, от лат. bilanx - имеющий две весовые чаши), 1) равновесие, уравновешивание. 2) Система показателей, которые …
  • ЗЕМЛИ
    древнерусские области, образовавшиеся около старых городов. З., часто на очень значительном протяжении от города, составляла собственность его жителей и всегда …
  • БАЛАНС в Энциклопедическом словаре Брокгауза и Евфрона:
    Баланс бухгалтерский. В бухгалтерии Б. устанавливается равновесиемежду дебетом в кредитом, причем различают счет Б. входящего, если имоткрываются коммерческие книги, и …
  • БАЛАНС в Энциклопедическом словарике:
    I а, мн. нет, м. 1. Соотношение взаимно связанных показателей какой-нибудь деятельности, процесса. Б. производства и потребления. а Торговый баланс …

Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является солнечная радиация, поэтому и соотношение составляющих . . характеризуют её преобразования в этих оболочках.

Т. б. представляют собой частные формулировки закона сохранения энергии и составляются для участка поверхности Земли (Т. б. земной поверхности); для вертикального столба, проходящего через атмосферу (Т. б. атмосферы); для такого столба, проходящего через атмосферу и верхние слои литосферы гидросферу (Т. б. системы Земля - атмосфера).

Т. б. земной поверхности: R + P + F0 + LE = 0 представляет собой алгебраическую сумму потоков энергии между элементом земной поверхности и окружающим пространством. В этих потоков входит радиационный (или остаточная радиация) R - между поглощённой коротковолновой солнечной радиацией и длинноволновым эффективным излучением с земной поверхности. Положительная или отрицательная радиационного баланса компенсируется несколькими потоками тепла. Так как земной поверхности обычно не равна температуре воздуха, то между подстилающей поверхностью и атмосферой возникает тепла . Аналогичный поток тепла F0 наблюдается между земной поверхностью и более глубокими слоями литосферы или гидросферы. При этом поток тепла в почве определяется молекулярной теплопроводностью, тогда как в водоёмах , как , имеет в большей или меньшей степени турбулентный . Поток тепла F0 между поверхностью водоёма и его более глубокими слоями численно равен изменению теплосодержания водоёма за данный времени и переносу тепла течениями в водоёме. Существенное в Т. б. земной поверхности обычно имеет тепла на LE, который определяется как массы испарившейся воды Е на теплоту испарения L. Величина LE зависит от увлажнения земной поверхности, её температуры, влажности воздуха и интенсивности турбулентного теплообмена в приземном слое воздуха, которая определяет переноса водяного от земной поверхности в атмосферу.

Уравнение Т. б. атмосферы имеет : Ra + Lr + P + Fa = DW.

Т. б. атмосферы слагается из её радиационного баланса Ra; прихода или расхода тепла Lr при фазовых преобразованиях воды в атмосфере (г - осадков); прихода или расхода тепла Р, обусловленного турбулентным теплообменом атмосферы с земной поверхностью; прихода или расхода тепла Fa, вызванного теплообменом через вертикальные стенки столба, который связан с упорядоченными движениями атмосферы и макротурбулентностью. Кроме , в уравнение T. б. атмосферы входит DW, равный величине изменения теплосодержания внутри столба.

Уравнение Т. б. системы Земля - атмосфера соответствует алгебраической сумме членов уравнений Т. б. земной поверхности и атмосферы. Составляющие Т. б. земной поверхности и атмосферы для различных районов земного шара определяются путём метеорологических наблюдений (на актинометрических станциях, на специальных станциях Т. б., на метеорологических спутниках Земли) или путём климатологических расчётов.

Широтные величины составляющих Т. б. земной поверхности для океанов, суши и Земли и Т. б. атмосферы приведены в таблицах 1, 2, где величины членов Т. б. считаются положительными, если соответствуют приходу тепла. Так как эти таблицы относятся к средним годовым условиям, в них не включены члены, характеризующие изменения теплосодержания атмосферы и верхних слоев литосферы, поскольку для этих условий близки к нулю.

Для Земли как , вместе с атмосферой, Т. б. представлена на . На единицу поверхности внешней границы атмосферы поступает поток солнечной радиации, равный в среднем около 250 ккал/см2 в , из которых около ═отражается в мировое , а 167 ккал/см2 в год поглощает Земля (стрелка Qs на рис. ). Земной поверхности достигает коротковолновая радиация, равная 126 ккал/см2 в год; 18 ккал/см2 в год из этого количества отражается, а 108 ккал/см2 в год поглощается земной поверхностью (стрелка Q). Атмосфера поглощает 59 ккал/см2 в год коротковолновой радиации, то есть значительно меньше, чем земная . Эффективное длинноволновое поверхности Земли равно 36 ккал/см2 в год (стрелка I), поэтому радиационный баланс земной поверхности равен 72 ккал/см2 в год. Длинноволновое излучение Земли в мировое пространство равно 167 ккал/см2 в год (стрелка Is). Таким образом, поверхность Земли получает около 72 ккал/см2 в год лучистой энергии, которая частично расходуется на испарение воды (кружок LE) и частично возвращается в атмосферу посредством турбулентной теплоотдачи (стрелка Р).

Табл. 1. - Тепловой баланс земной поверхности, ккал/см2 год

Градусы

Земля в среднем

R══════LE ═════════Р════Fo

R══════LE══════Р

═R════LE═══════Р═════F0

70-60 северной широты

0-10 южной широты

Земля в целом

23-══33═══-16════26

29-══39═══-16════26

51-══53═══-14════16

83-══86═══-13════16

113-105═══- 9═══════1

119-══99═══- 6═-14

115-══80═══- 4═-31

115-══84═══- 4═-27

113-104═══-5════-4

101-100═══- 7══════6

82-══80═══-9═══════7

57-══55═══-9═══════7

28-══31═══-8══════11

82-══74═══-8═══════0

20═══-14══- 6

30═══-19══-11

45═══-24══-21

60═══-23══-37

69═══-20══-49

71═══-29══-42

72═══-48══-24

72═══-50══-22

73═══-41══-32

70═══-28══-42

62═══-28══-34

41═══-21══-20

31═══-20══-11

49═══-25══-24

21-20══- 9═══════8

30-28═-13═════11

48-38═-17══════7

73-59═-23══════9

96-73═-24══════1

106-81═-15═-10

105-72══- 9═-24

105-76══- 8═-21

104-90═-11═══-3

94-83═-15══════4

80-74═-12══════6

56-53══- 9══════6

28-31══- 8════11

72-60═-12══════0

Данные о составляющих Т. б. используются при разработке многих проблем климатологии, гидрологии суши, океанологии; они применяются для обоснования численных моделей теории климата и для эмпирической проверки результатов применения этих моделей. Материалы о Т. б. играют большую