Тепловой режим поверхности земли и атмосферы. Тепловой баланс земной поверхности Тепловой режим подстилающей поверхности

Тепловая энергия поступает в нижние слои атмосферы главным образом от подстилающей поверхности. Тепловой режим этих слоев


тесно связан с тепловым режимом земной поверхности, поэтому его изучение является также одной из важных задач метеорологии.

Основными физическими процессами, при которых почва по­лучает или отдает тепло, являются: 1) лучистый теплообмен; 2) турбулентный теплообмен между подстилающей поверхностью и атмосферой; 3) молекулярный теплообмен между поверхностью почвы и нижним неподвижным прилегающим слоем воздуха; 4) те­плообмен между слоями почвы; 5) фазовый теплообмен: затраты тепла на испарение воды, таяние льда и снега на поверхности и в глубине почвы или его выделение при обратных процессах.

Тепловой режим поверхности земли и водоемов определяется их теплофизическими характеристиками. Особое внимание при подготовке следует обратить на вывод и анализ уравнения тепло­проводности почвы (уравнение Фурье). Если почва однородна по вертикали, то ее температура t на глубине z в момент времени т мо­жет быть определена из уравнения Фурье

где а - температуропроводность почвы.

Следствием этого уравнения являются основные законы рас­пространения температурных колебаний в почве:

1. Закон неизменности периода колебаний с глубиной:

T(z) = const (2)

2. Закон уменьшения амплитуды колебаний с глубиной:

(3)

где и - амплитуды на глубинах а - темпера­туропроводность слоя почвы, лежащего между глубинами ;

3. Закон сдвига фазы колебаний с глубиной (закон запаздыва­ния):

(4)

где запаздывание, т.е. разность между моментами наступ­ления одинаковой фазы колебаний (например, максимума) на глубинах и Колебания температуры проникают в почву до глуби­ны z np , определяемой соотношением:

(5)

Кроме того, необходимо обратить внимание на ряд следствий из закона уменьшения амплитуды колебаний с глубиной:

а) глубины, на которых в разных почвах ( ) амплитуды температурных колебаний с одинаковым периодом ( = Т 2) умень­шаются в одинаковое число раз относятся между собой как корни квадратные из температуропроводности этих почв

б) глубины, на которых в одной и той же почве (а = const) ам­плитуды температурных колебаний с разными периодами () уменьшаются в одинаковое число раз =const , относятся между собой как корни квадратные из периодов колебаний

(7)

Необходимо четко усвоить физический смысл и особенности формирования теплового потока в почву.

Поверхностная плотность теплового потока в почве определя­ется по формуле:

где λ - коэффициент теплопроводности почвы вертикаль­ный градиент температуры.

Мгновенные значение Р выражаются в кВт/м с точностью до сотых, суммы Р - в МДж/м 2 (часовые и суточные - с точностью до сотых, месячные - до единиц, годовые - до десятков).

Средняя поверхностная плотность теплового потока через по­верхность почвы за интервал времени т описывается формулой


где С - объемная теплоемкость почвы; интервал; z„ p - глубина проникновения температурных колебаний; ∆t cp - разность средних температур слоя почвы до глубины z np в конце и в начале интервала т. Приведем основные примеры задач по теме «Тепловой режим почвы».

Задача 1. На какой глубине уменьшается в е раз амплитуда су­точных колебаний в почве, имеющей коэффициент температуро­проводности а = 18,84 см 2 /ч?

Решение. Из уравнения (3) следует, что амплитуда суточных ко­лебаний уменьшится в е раз на глубине, соответствующей условию

Задача 2. Найти глубину проникновения суточных колебаний температуры в гранит и в сухой песок, если экстремальные темпе­ратуры поверхности соседних участков с гранитной почвой 34,8 °С и 14,5 °С, а с сухой песчаной почвой 42,3 °С и 7,8 °С. Температуро­проводность гранита а г = 72,0 см 2 /ч, сухого песка а п = 23,0 см 2 /ч.

Решение. Амплитуда температуры на поверхности гранита и песка равна:

Глубина проникновения рассматривается по формуле (5):

В связи с большей температуропроводностью гранита мы по­лучили и большую глубину проникновения суточных колебаний температуры.

Задача 3. Предположив, что температура верхнего слоя почвы изменяется с глубиной линейно, следует вычислить поверхностную плотность теплового потока в сухом песке, если температура его поверхности составляет 23,6 "С, а температура на глубине 5 см рав­на 19,4 °С.

Решение. Температурный градиент почвы в этом случае равен:

Теплопроводность сухого песка λ= 1,0 Вт/м*К. Поток тепла в почву определяем по формуле:

Р = -λ - = 1,0 84,0 10" 3 = 0,08 кВт/м 2

Тепловой режим приземного слоя атмосферы определяется главным образом турбулентным перемешиванием, интенсивность которого зависит от динамических факторов (шероховатости зем­ной поверхности и градиентов скоростей ветра на различных уров­нях, масштаба движения) и термических факторов (неоднородности нагревания различных участков поверхности и вертикального рас­пределения температуры).

Для характеристики интенсивности турбулентного перемеши­вания используется коэффициент турбулентного обмена А и коэф­фициент турбулентности К. Они связаны соотношением

К = А/р (10)

где р - плотность воздуха.

Коэффициент турбулентности К измеряется в м 2 /с, с точностью до сотых долей. Обычно в приземном слое атмосферы используют коэффициент турбулентности К] на высоте г" = 1 м. В пределах при­земного слоя:

где z - высота (м).

Необходимо знать основные методы определения К\.

Задача 1. Вычислить поверхностную плотность вертикально­го теплового потока в приземном слое атмосферы через площадку, на уровне которой плотность воздуха равна нормальной, коэффици­ент турбулентности равен 0,40 м 2 /с, а вертикальный градиент тем­пературы 30,0 °С/100м.


Решение. Вычисляем поверхностную плотность вертикального теплового потока по формулe

L=1.3*1005*0.40*

Изучите факторы, влияющие на тепловой режим приземного слоя атмосферы, а также периодические и непериодические измене­ния температуры свободной атмосферы. Уравнения теплового балан­са земной поверхности и атмосферы описывают закон сохранения энергии, полученной деятельным слоем Земли. Рассмотрите суточ­ный и годовой ход теплового баланса и причины его изменений.

Литература

Раздел Ш, гл. 2, § 1 -8.

Вопросы для самопроверки

1. Какие факторы определяют тепловой режим почвы и водоемов?

2. Каков физический смысл теплофизических характеристик и как они влияют на температурный режим почвы, воздуха, воды?

3. От чего зависят и как зависят амплитуды суточных и годовых колебаний тем­пературы поверхности почвы?

4. Сформулируйте основные законы распределения температурных колебаний в почве?

5. Какие следствия вытекают из основных законов распределения температурных колебаний в почве?

6. Каковы средние глубины проникновения суточных и годовых колебаний тем­пературы в почве и в водоемах?

7. Каково влияние растительного и снежного покрова на тепловой режим почвы?

8. Какие особенности теплового режима водоемов, в отличие от теплового режима почвы?

9. Какие факторы влияют на интенсивность турбулентности в атмосфере?

10. Какие количественные характеристики турбулентности вы знаете?

11. Каковы основные методы определения коэффициента турбулентности, их дос­тоинства и недостатки?

12. Нарисуйте и проанализируйте суточный ход коэффициента турбулентности над поверхностью суши и водоема. В чем причины их различия?

13. Как определяется поверхностная плотность вертикального турбулентного теп­лового потока в приземном слое атмосферы?


B - рад. Баланс, Р- тепло полученное при молек. теплообмене с поверхн. Земли. Len – получ от конденсац. влага.

Тепловой баланс атмосферы:

B - рад. Баланс, Р- затраты тепла на молек. теплообмен с нижними слоями атмосферы. Gn - затраты тепла на молек. теплообмен с нижними слоями грунта Len – затраты тепла на испарение влаги.

Остальное по карте

10)Тепловой режим подстилающей поверхности:

Поверхность которая непосредственно нагревается солнечными лучами и отдаёт тепло нижележащим слоям почвы и воздуху называют деятельный поверхностью.

Температура деятельной поверхности определяется тепловым балансом.

Суточном ходе температур деятельной поверхности максимально поступает 13 часов, минимально температура около момента восхода солнца. максим. и миним. температуры в течении суток могут смещаться из-за облачности, влажности почвы и растительногопокрова.

Значения тепрературы зависит:

  1. От географической широты местности
  2. От времени года
  3. О облачности
  4. От тепловых свойств поверхности
  5. От растительности
  6. От экспозиции склонов

В годовом ходе температур максимально в средних и высоких шротах в северном полушарии наблюдается в июле, а минимальные в январе. В низких широтах годовые амплитуды колебания температур небольшие.

Распределение температуры в глубь зависит от теплоёмкости и её теплопроводности на передачу тепла от слоя к слою требуется время, на каждые 10 метров последовательном нагревании слоёв каждый слой поглощает часть тепла, поэтому чем глубже слой тем меньше тепла он получает, и тем меньше в нём колебание температур в среднем на глубине 1 м. суточные колебания температу преклащаются, годовые колебания в низких широтах заканчиваются на глубине 5-10 м. в средних широтах до 20 м. в высоких 25 м. Слой почвы на которм практически заканчиваются колебания температур наз. Слоем постоянных температур, слой грунта который расположен между деятельной поверхностью и слоем постоянных температурназывают деятельным слоем.

Особенностями распр. Температуры в земле занимался Фурье, он сформулировал законы распространения тепла в почвеили «законы Фурье»:

1))).Чем больше плотность и влажность почвы тем лучше она проводит тепло, тем быстрее быстрее распр в глубину и тем глубже проникает тепло. Температура не зависит от типов почв. Период колебания с глубиной не изменяется

2))). Возрастание глубины в арифметической прогрессии приводит к уменьшению амплитуды температур в прогрессии геометрической.

3)))Сроки наступления максимальных и минимальных температур как в суточном так и в годовом ходе температур затухают с глубиной пропорционально увеличению глубины.

11.Нагревание атмосферы. Адвекция.. Основным источником жизни и многих природных процессов на Земле является лучистая энергия Солнца, или энергия солнечной радиации. Каждую минуту на Землю поступает 2,4 х 10 18 кал энергии Солнца, но это лишь одна двухмиллиардная ее часть. Различают прямую радиацию (непосредственно приходящую от Солнца) и рассеянную (излучаемую частицами воздуха по всем направлениям). Их совокупность, поступающую на горизонтальную поверхность, называют суммарной радиацией. Годовая величина суммарной радиации зависит прежде всего от угла падения на земную поверхность солнечных лучей (который определяется географической широтой), от прозрачности атмосферы и продолжительности освещения. В целом суммарная радиация уменьшается от экваториально-тропических широт к полюсам. Она максимальна (около 850 Дж/см 2 в год, или 200 ккал/см 2 в год) - в тропических пустынях, где прямая солнечная радиация из-за большой высоты Солнца и безоблачного неба наиболее интенсивная.

Солнце в основном нагревает поверхность Земли, от неё нагревается воздух. Тепло передается воздуху путем лучеиспускания и теплопроводности. Нагретый от земной поверхности воздух расширяется и поднимается вверх - так образуются конвективные токи. Способность земной поверхности отражать солнечные лучи называется альбедо: снег отражает до 90 % солнечной радиации, песок - 35 %, а влажная поверхность почвы около 5 %. Та часть суммарной радиации, которая остается после затраты ее на отражение и на тепловое излучение от земной поверхности, называется радиационным балансом (остаточной радиацией). Радиационный баланс закономерно уменьшается от экватора (350 Дж/см 2 в год, или около 80 ккал/см 2 в год) к полюсам, где он близок к нулю. От экватора до субтропиков (сороковые широты) радиационный баланс в течение всего года положительный, в умеренных широтах зимой - отрицательный. Температура воздуха также убывает к полюсам, что хорошо отражают изотермы - линии, соединяющие точки с одинаковой температурой. Изотермы самого теплого месяца являются границами семи тепловых поясов. Жаркий пояс ограничивают изотермы +20 °c до +10 °c простираются два умеренных полюса, от +10 °c до 0 °c - холодные. Две приполярные области мороза оконтуриваются нулевой изотермой - здесь льды и снега практически не тают. До 80 км простирается мезосфера, в которой плотность воздуха в 200 раз меньше, чем у поверхности, а температура вновь понижается с высотой (до -90°). Далее следует состоящая из заряженных частиц ионосфера (здесь возникают полярные сияния), другое свое название - термосфера - эта оболочка получила из-за чрезвычайно высоких температур (до 1500°). Слои выше 450 км некоторые ученые называют экзосферой, отсюда частицы ускользают в космическое пространство.

Атмосфера предохраняет Землю от чрезмерного перегревания днем и охлаждения ночью, защищает все живое на Земле от ультрафиолетовой солнечной радиации, метеоритов, корпускулярных потоков и космических лучей.

Адвекция – перемещение воздуха в горизонтальном направлении и перенос вместе с ним его свойств: температуры, влажности и других. В этом смысле говорят, например, об адвекции тепла и холода. Адвекция холодных и тёплых, сухих и влажных воздушных масс играет важную роль в метеорологических процессах и тем самым влияет на состояние погоды.

Конве́кция - явление переноса теплоты в жидкостях, газах или сыпучих средах потоками самого вещества (неважно, вынужденно или самопроизвольно). Существует т. н. естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции, нижние слои вещества нагреваются, становятся легче и всплывают вверх, а верхние слои, наоборот, остывают, становятся тяжелее и погружаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек.

Различают ламинарную и турбулентную конвекцию.

Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.

Адиабатический процесс- изменение термодинамического состояния воздуха, протекающее адиабатически (изэнтро-пически), т. е. без обмена теплом между ним и средой (земной поверхностью, космосом, другими массами воздуха).

12. Инверсии температуры в атмосфере, повышение температуры воздуха с высотой вместо обычного для тропосферы её убывания. Инверсии температуры встречаются и у земной поверхности (приземные Инверсии температуры ), и в свободной атмосфере. Приземные Инверсии температуры чаще всего образуются в безветренные ночи (зимой иногда и днём) в результате интенсивного излучения тепла земной поверхностью, что приводит к охлаждению как её самой, так и прилегающего слоя воздуха. Толщина приземных Инверсии температуры составляет десятки - сотни метров. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °С и более. Наиболее мощны зимние приземные Инверсии температуры в Восточной Сибири и в Антарктиде.
В тропосфере, выше приземного слоя, Инверсии температуры чаще образуются в антициклонах благодаря оседанию воздуха, сопровождающемуся его сжатием, а следовательно - нагреванием (инверсии оседания). В зонах фронтов атмосферных Инверсии температуры создаются вследствие натекания тёплого воздуха на нижерасположенный холодный. В верхних слоях атмосферы (стратосфере, мезосфере, термосфере) Инверсии температуры возникают из-за сильного поглощения солнечной радиации. Так, на высотах от 20-30 до 50-60 км расположена Инверсии температуры , связанная с поглощением ультрафиолетового излучения Солнца озоном. У основания этого слоя температура равна от - 50 до - 70°C, у его верхней границы она поднимается до - 10 - + 10 °С. Мощная Инверсии температуры , начинающаяся на высоте 80-90 км и простирающаяся на сотни км вверх, также обусловлена поглощением солнечной радиации.
Инверсии температуры являются задерживающими слоями в атмосфере; они препятствуют развитию вертикальных движений воздуха, вследствие чего под ними накапливаются водяной пар, пыль, ядра конденсации. Это благоприятствует образованию слоев дымки, тумана, облаков. Вследствие аномальной рефракции света в Инверсии температуры иногда возникают миражи . В Инверсии температуры образуются также атмосферные волноводы ,благоприятствующие дальнему распространению радиоволн .

13.Типы годового хода температуры.Г одовой ход температуры воздуха в разных географических зонах разнообразен. По величине амплитуды и по времени наступления экстремальных температур выделяют четыре типа годового хода температуры воздуха.

Экваториальный тип. В экваториальной зоне в году наблюдаются два

максимума температуры - после весеннего и осеннего равноденствия, когда

солнце над экватором в полдень находится в зените, и два минимума - после

зимнего и летнего солнцестояния, когда солнце находится на наименьшей

высоте. Амплитуды годового хода здесь малы, что объясняется малым

изменением притока тепла в течение года. Над океанами амплитуды составляют

около 1 °С, а над континентами 5-10 °С.

Тропический тип. В тропических широтах наблюдается простой годовой ход

температуры воздуха с максимумом после летнего и минимумом после зимнего

солнцестояния. Амплитуды годового хода по мере удаления от экватора

увеличиваются зимой. Средняя амплитуда годового хода над материками

составляет 10 - 20° С, над океанами 5 - 10° С.

Тип умеренного пояса. В умеренных широтах также отмечается годовой ход

температуры с максимумом после летнего и минимумом после зимнего

солнцестояния. Над материками северного полушария максимальная

среднемесячная температура наблюдается в июле, над морями и побережьями - в

августе. Годовые амплитуды увеличиваются с широтой. Над океанами и

побережьями они в среднем составляют 10-15° С, а на широте 60° достигают

Полярный тип. Полярные районы характеризуются продолжительной холодной

зимой и сравнительно коротким прохладным летом. Годовые амплитуды над

океаном и побережьями полярных морей составляют 25-40° С, а на суше

превышают 65° С. Максимум температуры наблюдается в августе, минимум - в

Рассмотренные типы годового хода температуры воздуха выявляются из

многолетних данных и представляют собой правильные периодические колебания.

В отдельные годы под влиянием вторжений теплых и холодных масс возникают

отклонения от приведенных типов.

14. Хар-ка влажности воздуха.

Влажность воздуха, содержание в воздухе водяного пара; одна из наиболее существенных характеристик погоды и климата. В. в. имеет большое значение при некоторых технологических процессах, лечении ряда болезней, хранении произведений искусства, книг и т.д.

Характеристиками В. в. служат: 1) упругость (или парциальное давление) е водяного пара, выражаемая в н/м 2 (в мм рт. ст. или в мб ), 2) абсолютная влажность а - количество водяного пара в г/м 3 ; 3) удельная влажность q - количество водяного пара в г на кг влажного воздуха; 4) отношение смеси w , определяемое количеством водяного пара в г на кг сухого воздуха; 5) относительная влажность r - отношение упругости е водяного пара, содержащегося в воздухе, к максимальной упругости Е водяного пара, насыщающего пространство над плоской поверхностью чистой воды (упругости насыщения) при данной температуре, выраженное в %; 6) дефицит влажности d - разность между максимальной и фактической упругостью водяного пара при данной температуре и давлении; 7) точка росы τ - температура, которую примет воздух, если охладить его изобарически (при постоянном давлении) до состояния насыщения находящегося в нём водяного пара.

В. в. земной атмосферы колеблется в широких пределах. Так, у земной поверхности содержание водяного пара в воздухе составляет в среднем от 0,2% по объёму в высоких широтах до 2,5% в тропиках. Соответственно упругость пара е в полярных широтах зимой меньше 1 мб (иногда лишь сотые доли мб ) и летом ниже 5 мб ; в тропиках же она возрастает до 30 мб , а иногда и больше. В субтропических пустынях е понижена до 5-10 мб (1 мб = 10 2 ·н/м 2). Относительная влажность r очень высока в экваториальной зоне (среднегодовая до 85% и более), а также в полярных широтах и зимой внутри материков средних широт - здесь за счёт низкой температуры воздуха. Летом высокой относительной влажностью характеризуются муссонные районы (Индия - 75-80%). Низкие значения r наблюдаются в субтропических и тропических пустынях и зимой в муссонных районах (до 50% и ниже). С высотой r , а и q быстро убывают. На высоте 1,5-2 км упругость пара в среднем вдвое меньше, чем у земной поверхности. На тропосферу (нижние 10-15 км ) приходится 99% водяного пара атмосферы. В среднем над каждым м 2 земной поверхности в воздухе содержится около 28,5 кг водяного пара.

Суточный ход упругости пара над морем и в приморских областях параллелен суточному ходу температуры воздуха: влагосодержание растет днём с возрастанием испарения. Таков же суточный ход е в центральных районах материков в холодное время года. Более сложный суточный ход с двумя максимумами - утром и вечером - наблюдается в глубине материков летом. Суточный ход относительной влажности r обратен суточному ходу температуры: днём с возрастанием температуры и, следовательно, с ростом упругости насыщения Е относительная влажность убывает. Годовой ход упругости пара параллелен годовому ходу температуры воздуха; относительная влажность меняется в годовом ходе обратно температуре. В. в. измеряется гигрометрами и психрометрами .

15. Испаре́ние - физический процесс перехода вещества из жидкого состояния в газообразное (пар) с поверхности жидкости. Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое).

Процесс испарения зависит от интенсивности теплового движения молекул: чем быстрее движутся молекулы, тем быстрее происходит испарение. Кроме того, немаловажными факторами, влияющими на процесс испарения, являются скорость внешней (по отношению к веществу) диффузии, а также свойства самого вещества. Проще говоря, при ветре испарение происходит гораздо быстрее. Что же касается свойств вещества, то, к примеру, спирт испаряется гораздо быстрее воды. Важным фактором является также площадь поверхности жидкости, с которой происходит испарение: из узкого графина оно будет происходить медленнее, чем из широкой тарелки.

Испаряемость - максимально возможное испарение при данных метеорологических условиях с достаточно увлажненной подстилающей поверхности, то есть в условиях неограниченного запаса влаги. Испаряемость выражается в миллиметрах слоя испарившейся воды и сильно отличается от фактического испарения, особенно в пустыне, где испарение близко к нулю, а испаряемость - 2000 мм в год и более.

16.Конденсация и сублимация. Конденсация состоит в изменении формы воды из ее газообразного состояния (водяной пар) в жидкую воду или кристаллы льда. Конденсация в основном происходит в атмосфере, когда теплый воздух поднимается, остывает и теряет способность содержать в себе водяной пар (состояние насыщения). В результате, избыточный водяной пар конденсируется в форме капельных облаков. Восходящее движение, которое образует облака, может быть вызвано конвекцией в неустойчиво стратифицированном воздухе, конвергенцией, ассоциируемой с циклонами, поднятием воздуха фронтами и поднятием над возвышенностями топографии, такими как горы.

Сублимация - образование ледяных кристаллов (иней) сразу из водяных паров без перехода их в воду или быстром их охлаждении ниже 0°С в то время, когда температура воздуха еще держится выше этого радиационного охлаждения, что случается в тихие ясные ночи в холодную часть года.

Роса́ - вид атмосферных осадков, образующихся на поверхности земли, растениях, предметах, крышах зданий, автомобилях и других предметах.

Из-за охлаждения воздуха водяной пар конденсируется на объектах вблизи земли и превращается в капли воды. Это происходит обычно ночью. В пустынных регионах роса является важным источником влаги для растительности. Достаточно сильное охлаждение нижних слоёв воздуха происходит, когда после заката солнца поверхность земли быстро охлаждается посредством теплового излучения. Благоприятными условиями для этого являются чистое небо и покрытие поверхности, легко отдающее тепло, например травяное. Особенно сильное образование росы происходит в тропических регионах, где воздух в приземном слое содержит много водяного пара и благодаря интенсивному ночному тепловому излучению земли существенно охлаждается. При отрицательных температурах образуется иней.

Температура воздуха ниже которой выпадает роса, называется точкой росы.

И́ней - вид атмосферных осадков, представляющих собой тонкий слой ледяных кристаллов, образующийся из водяного пара атмосферы. Часто сопровождается туманом.Так же, как роса, образуется вследствие охлаждения поверхности до отрицательных температур, более низких, чем температура воздуха, и десублимации водяного пара на поверхности, охладившейся ниже 0°С. По форме частички инея напоминают снежинки, но отличаются от них меньшей правильностью, так как зарождаются в менее равновесных условиях, на поверхности каких-то предметов.

Изморозь - вид атмосферных осадков.

Изморозь представляет собой отложения льда на тонких и длинных предметах (ветвях деревьев, проводах) при тумане.

Транскрипт

1 ТЕПЛОВОЙ РЕЖИМ АТМОСФЕРЫ и земной поверхности

2 Тепловой баланс земной поверхности на земную поверхность поступают суммарная радиация и встречное излучение атмосферы. Они поглощаются поверхностью, т. е. идут на нагревание верхних слоев почвы и воды. В то же время земная поверхность излучает сама и при этом теряет тепло.

3 Земная поверхность (деятельная поверхность, подстилающая поверхность) т. е. поверхность почвы или воды (растительного, снежного, ледяного покрова), непрерывно разными способами получает и теряет тепло. Через земную поверхность тепло передается вверх в атмосферу и вниз в почву или в воду. В любой промежуток времени от земной поверхности уходит вверх и вниз в совокупности такое же количество тепла, какое она за это время получает сверху и снизу. Если бы было иначе, не выполнялся бы закон сохранения энергии: следовало бы допустить, что на земной поверхности энергия возникает или исчезает. Алгебраическая сумма всех приходов и расходов тепла на земной поверхности должна быть равной нулю. Это и выражается уравнением теплового баланса земной поверхности.

4 уравнение теплового баланса, Чтобы написать уравнение теплового баланса, во-первых, объединим поглощенную радиацию Q (1- А) и эффективное излучение Еэф = Ез - Еа в радиационный баланс: B=S +D R + Eа Ез или B= Q (1- А) - Еэф

5 Радиационный баланс земной поверхности - Это разность между поглощенной радиацией (суммарная радиация минус отраженная) и эффективным излучением (излучение земной поверхности минус встречное излучение) B=S +D R + Eа Ез В=Q(1-A)-Eэф Ночью коротковолновый баланс =0 Поэтому В= - Eэф

6 1) Приход тепла из воздуха или отдачу его в воздух путем теплопроводности обозначим Р 2) Такой же приход или расход путем теплообмена с более глубокими слоями почвы или воды назовем А. 3) Потерю тепла при испарении или приход его при конденсации на земной поверхности обозначим LE, где L удельная теплота испарения и Е испарение / конденсация (масса воды). Тогда уравнение теплового баланса земной поверхности напишется так: В= Р+А+LE Уравнение теплового баланса относится к единице площади деятельной поверхности Все его члены потоки энергии Они имеют размерность Вт/м 2

7 смысл уравнения состоит в том что радиационный баланс на земной поверхности уравновешивается нерадиационной передачей тепла. Уравнение действительно для любого промежутка времени, в том числе и для многолетнего периода.

8 Составляющие теплового баланса системы Земля-атмосфера Получено от солнца Отдано земной поверхностью

9 Варианты баланса тепла Q радиационный баланс LE затраты тепла на испарение H турбулентный поток тепла из (в) атмосферы от подстилающей поверхности G -- поток тепла в (из) глубь почвы

10 Приход и расход В=Q(1-A)-Eэф В= Р+А+LE Q(1-A)- Поток солнечной радиации, частично отражаясь проникает вглубь деятельного слоя на разные глубины и всегда нагревает его Эффективное излучение обычно охлаждает поверхность Eэф Испарение также всегда охлаждает поверхность LE Поток тепла в атмосферу Р охлаждает поверхность днем, когда она горячее воздуха, но согревает ночью, когда атмосфера теплее поверхности земли. Поток тепла в почву А, отводит лишнее тепло днем (охлаждает поверхность), но подводит недостающее тепло из глубин ночью

11 средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало От суток к суткам и от года к году средняя температура деятельного слоя и земной поверхности в любом месте меняется мало. Это значит, что за сутки в глубь почвы или воды попадает днем почти столько же тепла, сколько уходит из нее ночью. Но все же за летние сутки тепла уходит вниз несколько больше, чем приходит снизу. Поэтому слои почвы и воды, и их поверхность день ото дня нагреваются. Зимой происходит обратный процесс. Эти сезонные изменения приходо-расхода тепла в почве и воде за год почти уравновешиваются, и средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало.

12 Подстилающая поверхность - это земная поверхность, непосредственно взаимодействующая с атмосферой

13 Деятельная поверхность Виды теплообмена деятельной поверхности Это поверхность почвы, растительности и любого другого вида поверхности суши и океана (воды), которая поглощает и отдает тепло Она регулирует термический режим самого тела и прилегающего слоя воздуха (приземного слоя)

14 Примерные значения параметров тепловых свойств деятельного слоя Земли Вещество Плотность Кг/м 3 Теплоемкость Дж/(кг К) Теплопроводность Вт/(м К) воздух 1,02 вода,63 лед,5 снег,11 дерево,0 песок,25 скала,0

15 Как прогревается земля: теплопроводность один из видов теплопереноса

16 Механизм теплопроводности (передача тепла вглубь тел) Теплопроводность - один из видов переноса теплоты от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При этом в теле осуществляется передача энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей Если относительное изменение температуры Т на расстоянии средней длины свободного пробега частиц мало, то выполняется основной закон теплопроводности (закон Фурье): плотность теплового потока q пропорциональна grad T, то есть где λ коэффициент теплопроводности, или просто теплопроводность, не зависит от grad T. λ зависит от агрегатного состояния вещества (см. табл.), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора) и т. д. Поток тепла в почву В уравнении теплового баланса это А G T c z

17 Передача тепла в почву подчиняется законам теплопроводности Фурье (1 и 2) 1) Период колебания температуры не меняется с глубиной 2) Амплитуда колебания затухает с глубиной по экспоненте

18 Распространение тепла в глубь почвы Чем больше плотность и влажность почвы, тем лучше она проводит тепло, тем быстрее распространяются в глубину и тем глубже проникают колебания температуры. Но, независимо от типа почвы, период колебаний температуры не изменяется с глубиной. Это значит, что не только на поверхности, но и на глубинах остается суточный ход с периодом в 24 часа между каждыми двумя последовательными максимумами или минимумами и годовой ход с периодом в 12 месяцев.

19 Формирование температуры в верхнем слое почвы (Что показывают коленчатые термометры) Амплитуда колебаний убывает по экспоненте. Ниже некоторой глубины (около см см) температура за сутки почти не меняется.

20 Суточный и годовой ход температуры поверхности почвы Температура на поверхности почвы имеет суточный ход: Минимум наблюдается примерно через полчаса после восхода солнца. К этому времени радиационный баланс поверхности почвы становится равным нулю отдача тепла из верхнею слоя почвы эффективным излучением уравновешивается возросшим притоком суммарной радиации. Нерадиационный же обмен тепла в это время незначителен. Затем температура на поверхности почвы растет до часов, когда достигает максимума в суточном ходе. После этого начинается падение температуры. Радиационный баланс в послеполуденные часы, остается положительным; однако отдача тепла в дневные часы из верхнего слоя почвы в атмосферу происходит не только путем эффективного излучения, но и путем возросшей теплопроводности, а также при увеличившемся испарении воды. Продолжается и передача тепла в глубь почвы. Поэтому температура на поверхности почвы падает с часов до утреннего минимума.

21 Суточный ход температуры в почве на разных глубинах амплитуды колебаний с глубиной уменьшаются. Так, если на поверхности суточная амплитуда равна 30, а на глубине 20 см - 5, то на глубине 40 см она будет уже менее 1 На некоторой сравнительно небольшой глубине суточная амплитуда убывает до нуля. На этой глубине (около см) начинается слой постоянной суточной температуры. Павловск, май. Амплитуда годовых колебаний температуры уменьшается с глубиной по тому же закону. Однако годовые колебания распространяются до большей глубины, что вполне понятно: для их распространения имеется больше времени. Амплитуды годовых колебаний убывают до нуля на глубине около 30 м в полярных широтах, около м в средних широтах, около 10 м в тропиках (где и на поверхности почвы годовые амплитуды меньше, чем в средних широтах). На этих глубинах начинается, слой постоянной годовой температуры. Суточный ход в почве затухает с глубиной по амплитуде и запаздывает по фазе в зависимости от влажности почвы: максимум приходится на вечер на суше и на ночь на воде (так же и минимум на утро и на день)

22 Законы теплопроводности Фурье (3) 3) С глубиной линейно растет запаздывание колебания по фазе Т.е. время наступления максимума температуры сдвигается относительно вышерасположенных слоев на несколько часов (к вечеру и даже ночи)

23 Четвертый закон Фурье глубины слоев постоянной суточной и годовой температуры относятся между собой как корни квадратные из периодов колебаний, т. е. как 1: 365. Это значит, что глубина, на которой затухают годовые колебания, в 19 раз больше, чем глубина, на которой затухают суточные колебания. И этот закон, так же, как и остальные законы Фурье, достаточно хорошо подтверждается наблюдениями.

24 Формирование температуры во всем деятельном слое почвы (Что показывают вытяжные термометры) 1. Период колебаний температуры не изменяется с глубиной 2. Ниже некоторой глубины температура за год не меняется. 3. Глубины распространения годовых колебаний примерно в 19 раз больше, чем суточных

25 Проникновение температурных колебаний вглубь почвы в соответствии с моделью теплопроводности Все установленные из модели теплопроводности следствия вполне согласуются с данными наблюдений Поэтому их часто называют Законами Фурье

26 . Средний суточный ход температуры на поверхности почвы (П) и в воздухе на высоте 2 м (В). Павловск, июнь. Максимальные температуры на поверхности почвы обычно выше, чем в воздухе на высоте метеорологической будки. Это понятно: днем солнечная радиация прежде всего нагревает почву, а уже от нее нагревается воздух.

27 годовой ход температуры почвы Температура поверхности почвы, конечно, меняется и в годовом ходе. В тропических широтах ее годовая амплитуда, т. е. разность многолетних средних температур самого теплого и самого холодного месяца года, мала и с широтой растет. В северном полушарии на широте 10 она около 3, на широте 30 около 10, на широте 50 в среднем около 25.

28 Колебания температуры в почве затухают с глубиной по амплитуде и запаздывают по фазе, максимум сдвигается на осень, а минимум на весну Годовые максимумы и минимумы запаздывают на дней на каждый метр глубины. Годовой ход температуры в почве на разных глубинах от 3 до 753 см в Калининграде. В тропических широтах годовая амплитуда, т. е. разность многолетних средних температур самого теплого и самого холодного месяца года, мала и растет с широтой. В северном полушарии на широте 10 она около 3, на широте 30 около 10, на широте 50 в среднем около 25.

29 Метод термоизоплет Наглядно представляет все особенности хода температуры и во времени и с глубиной (в одном пункте) Пример годовой ход и суточный ход Изоплеты годового хода температуры в почве в Тбилиси

30 Суточный ход температуры воздуха приземного слоя Температура воздуха меняется в суточном ходе вслед за температурой земной поверхности. Поскольку воздух нагревается и охлаждается от земной поверхности, амплитуда суточного хода температуры в метеорологической будке меньше, чем на поверхности почвы, в среднем примерно на одну треть. Рост температуры воздуха начинается вместе с ростом температуры почвы (минут на 15 позже) утром, после восхода солнца. В часов температура почвы, как мы знаем, начинает понижаться. В часов она уравнивается с температурой воздуха; с этого времени при дальнейшем падении температуры почвы начинает падать и температура воздуха. Таким образом, минимум в суточном ходе температуры воздуха у земной поверхности приходится на время вскоре после восхода солнца, а максимум на часов.

32 Различия в тепловом режиме почвы и водоемов Существуют резкие различия в нагревании и тепловых особенностях поверхностных слоев почвы и верхних слоев водоемов. В почве тепло распространяется по вертикали путем молекулярной теплопроводности, а в легкоподвижной воде также путем турбулентного перемешивания водных слоев, намного более эффективного. Турбулентность в водоемах обусловлена, прежде всего, волнением и течениями. Но в ночное время суток и в холодное время года к этого рода турбулентности присоединяется еще и термическая конвекция: охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев.

33 Особенности температуры водоемов, связанные с большими коэффициентами турбулентной теплопередачи Суточные и годовые колебания в воде проникают на значительно большие глубины, чем в почве Амплитуды температуры гораздо меньше и почти одинаковы в ВКС озер и морей Потоки тепла в деятельном слое воды во много раз больше, чем в почве

34 Суточные и годовые колебания В результате суточные колебания температуры воды распространяются на глубину порядка десятков метров, а в почве менее чем до одного метра. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве только на м. Итак, тепло, приходящее днем и летом на поверхность воды, проникает до значительной глубины и нагревает большую толщу воды. Температура верхнего слоя и самой поверхности воды повышается при этом мало. В почве приходящее тепло распределяется в тонком верхнем слое, который, таким образом, сильно нагревается. Теплообмен с более глубокими слоями в уравнении теплового баланса «А» для воды гораздо больше, чем для почвы, а Поток тепла в атмосферу «Р» (турбулентность) соответственно меньше. Ночью и зимой вода теряет тепло из поверхностного слоя, но взамен него приходит накопленное тепло из нижележащих слоев. Поэтому температура на поверхности воды понижается медленно. На поверхности почвы температура при отдаче тепла падает быстро: тепло, накопленное в тонком верхнем слое, быстро из него уходит без восполнения снизу.

35 Получены карты турбулентного теплообмена атмосферы и подстилающей поверхности

36 В океанах и морях некоторую роль в перемешивании слоев и в связанной с ним передаче тепла играет также и испарение. При значительном испарении с поверхности моря верхний слой воды становится более соленым и плотным, вследствие чего вода опускается с поверхности в глубину. Кроме того, радиация глубже проникает в воду в сравнении с почвой. Наконец, теплоемкость воды велика в сравнении с почвой, и одно и то же количество тепла нагревает массу воды до меньшей температуры, чем такую же массу почвы. ТЕПЛОЁМКОСТЬ - Количество теплоты, поглощаемой телом при нагревании на 1 градус (по Цельсию) или отдаваемой при остывании на 1 градус (по Цельсию) или способность материала аккумулировать тепловую энергию.

37 Вследствие указанных различий в распространении тепла: 1. вода за теплое время года накапливает в достаточно мощном слое воды большое количество тепла, которое отдает в атмосферу в холодный сезон. 2. почва в течение теплого сезона отдает по ночам большую часть того тепла, которое получает днем, и мало накапливает его к зиме. В результате указанных различий температура воздуха над морем летом ниже, а зимой выше, чем над сушей. В средних широтах за теплую половину года в почве накапливается 1,5 3 ккал тепла на каждый квадратный сантиметр поверхности. В холодное время почва отдает это тепло атмосфере. Величина ±1,5 3 ккал/см 2 в год составляет годовой теплооборот почвы.

38 По амплитудам годового хода температуры определяют континентальный климат или морской Карта амплитуд годового хода температуры у поверхности Земли

39 Положение места относительно береговой линии существенно влияет на режим температуры, влажности, облачности, Осадков и определяет степень континентальности климата.

40 Континентальность климата Континентальность климата - совокупность характерных особенностей климата, определяемых воздействиями материка на процессы климатообразования. В климате над морем (морской климат) наблюдаются малые годовые амплитуды температуры воздуха по сравнению с континентальным климатом над сушей с большими годовыми амплитудами температуры.

41 Годовой ход температуры воздуха на широте 62 с.ш.: на Фарерских островах и Якутске отражает географическое положение этих пунктов: в первом случае - у западных берегов Европы, во втором - в восточной части Азии

42 Средняя годовая амплитуда в Торсхавне 8, в Якутске 62 C. На континенте Евразия наблюдается возрастание годовой амплитуды в направлении с запада на восток.

43 Евразия - материк с наибольшим распространением континентального климата Этот тип климата характерен для внутренних регионов материков. Континентальный климат является господствующим на значительной части территории России, Украины, Средней Азии (Казахстан, Узбекистан, Таджикистан), Внутреннего Китая, Монголии, внутренних регионах США и Канады. Континентальный климат приводит к образованию степей и пустынь, так как большая часть влаги морей и океанов не доходит до внутриконтинентальных регионов.

44 индекс континентальности - это числовая характеристика континентальности климата. Существует ряд вариантов И К, в основу которых положена та или иная функция годовой амплитуды температуры воздуха А: по Горчинскому, по Конраду,по Ценкеру, по Хромову Есть индексы, построенные на других основаниях. Например, предложено в качестве И. К. отношение повторяемости континентальных воздушных, масс к повторяемости морских воздушных масс. Л. Г. Полозова предложила характеризовать континентальность по отдельности для января и июля по отношению к наибольшей континентальности на данной широте; эта последняя определяется по изаномалам температуры. Η. Η. Иванов предложил И. К. в виде функции от широты, годовой и суточной амплитуд температуры и от дефицита влажности в самый сухой месяц.

45 индекс континентальности Величина годовой амплитуды температуры воздуха зависит от географической широты. В низких широтах годовые амплитуды температуры меньше по сравнению с высокими широтами. Это положение приводит к необходимости исключения влияния широты на годовую амплитуду. Для этого предложены различные показатели континентальности климата, представленные функцией годовой амплитуды температуры и широты места. Формула Л. Горчинского где А - годовая амплитуда температуры. Средняя континентальность над океаном равна нулю, а для Верхоянска равна 100.

47 Морской и континентальный Область умеренного морского климата характеризуется довольно тёплой зимой (от -8 С до 0 С), прохладным летом (+16 С) и большим количеством осадков (более 800 мм), равномерно выпадающих в течение всего года. Для умеренно континентального климата характерно колебание температуры воздуха примерно от -8 С в январе до +18 С в июле, осадков здесь больше мм, которые выпадают большей частью летом. Для области континентального климата характерны более низкие температуры в зимний период (до -20 С) и меньшее количество осадков (около 600 мм). В области умеренного резко континентального климата зима будет ещё холоднее до -40 С, а осадков ещё меньше мм.

48 Экстремумы В Московской области летом на поверхности обнаженной почвы наблюдаются температуры до +55, а в пустынях даже до +80. Ночные минимумы температуры, наоборот, бывают на поверхности почвы ниже, чем в воздухе, так как, прежде всего, почва выхолаживается эффективным излучением, а уже от нее охлаждается воздух. Зимой в Московской области ночные температуры на поверхности (в это время покрытой снегом) могут падать ниже 50, летом (кроме июля) до нуля. На снежной поверхности во внутренних районах Антарктиды даже средняя месячная температура в июне около 70, а в отдельных случаях она может падать до 90.

49 Карты средней температуры Воздуха Январь и июль

50 Распределение температуры воздуха (зональность распределения главный фактор климатической зональности) Средняя годовая Средняя лето (июль) Средняя за январь Средняя по широтным поясам

51 Температурный режим территории России Характеризуется большими контрастами в зимний период. В Восточной Сибири зимний антициклон, являющийся чрезвычайно устойчивым барическим образованием, способствует формированию на северо-востоке России полюса холода со среднемесячной температурой воздуха зимой 42 С. Средний минимум температуры зимой составляет 55 С. На Европейской территории России под влиянием переноса теплого атлантического воздуха средняя температура за зиму изменяется от С на юго-западе, достигая на Черноморском побережье положительных значений, до С в центральных областях.

52 Средняя температура приземного воздуха (С) зимой гг.

53 Средняя температура приземного воздуха (С) летом гг. Средняя температура воздуха изменяется от 4 5 С на северных побережьях до С на югозападе, где ее средний максимум составляет С, а абсолютный максимум 45 С. Амплитуда экстремальных значений температуры достигает 90 С. Особенностью режима температуры воздуха России являются ее большие суточные и годовые амплитуды, особенно в резко континентальном климате Азиатской территории. Годовая амплитуда изменяется от 8 10 С ЕТР до 63 С в Восточной Сибири в районе Верхоянского хребта.

54 Влияние растительного покрова на температуру поверхности почвы Растительный покров уменьшает охлаждение почвы ночью. Ночное излучение происходит при этом преимущественно с поверхности самой растительности, которая и будет наиболее охлаждаться. Почва же под растительным покровом сохраняет более высокую температуру. Однако днем растительность препятствует радиационному нагреванию почвы. Суточная амплитуда температуры под растительным покровом уменьшена, а средняя суточная температура понижена. Итак, растительный покров в общем охлаждает почву. В Ленинградской области поверхность почвы под полевыми культурами может оказаться в дневные часы на 15 холоднее, чем почва под паром. В среднем же за сутки она холоднее обнаженной почвы на 6, и даже на глубине 5 10 см остается разница в 3 4.

55 Влияние снежного покрова на температуру почвы Снежный покров предохраняет почву зимой от потери тепла. Излучение идет с поверхности самого снежного покрова, а почва под ним остается более теплой, чем обнаженная почва. При этом суточная амплитуда температуры на поверхности почвы под снегом резко уменьшается. В средней полосе Европейской территории России при снежном покрове 50 см температура поверхности почвы под ним на 6 7 выше, чем температура обнаженной почвы, и на 10 выше, чем температура на поверхности самого снежного покрова. Зимнее промерзание почвы под снегом достигает глубин порядка 40 см, а без снега может распространяться до глубин более 100 см. Итак, растительный покров летом снижает температуру на поверхности почвы, а снежный покров зимой, напротив, ее повышает. Совместное действие растительного покрова летом и снежного зимой уменьшает годовую амплитуду температуры на поверхности почвы; это уменьшение порядка 10 в сравнении с обнаженной почвой.

56 ОПАСНЫЕ МЕТЕОРОЛОГИЧЕСКИЕ ЯВЛЕНИЯ И ИХ КРИТЕРИИ 1. очень сильный ветер (в т.ч. шквал) не менее 25 м/с, (включая порывы), на побережье морей и в горных районах не менее 35 м/ с; 2. очень сильный дождь не менее 50 мм за период не более 12 ч 3. ливень не менее 30мм за период не более 1 ч; 4. очень сильный снег не менее 20мм за период не более 12 ч; 5. крупный град - не менее 20мм; 6. сильная метель- при средней скорости ветра не менее 15м/с и видимости менее 500 м;

57 7. Сильная пыльная буря при средней скорости ветра не менее 15м/с, и видимости не более 500 м; 8. Сильный туман видимость не более 50 м; 9. Сильное гололедно-изморозевое отложение не менее 20 мм для гололеда, не менее 35 мм для сложного отложения или мокрого снега, не менее 50 мм для изморози. 10. Сильная жара - Высокая максимальная температура воздуха не менее 35 ºС в течение более 5 сут. 11. Сильный мороз - Минимальная температура воздуха не менее минус 35ºС в течение не менее 5 сут.

58 Опасные явления, связанные с повышенными температурами Пожароопасность Сильная жара

59 Опасные явления, связанные с пониженными температурами Снежные бури- биззарды Сильные морозы Резкие потепления - фены

60 Заморозки. Заморозком называется кратковременное понижение температуры воздуха или деятельной поверхности (поверхности почвы) до О С и ниже на общем фоне положительных средних суточных температур

61 Основные понятия о температуре воздуха ЧТО НУЖНО ЗНАТЬ! Карту среднегодовой температуры Отличия температуры лета и зимы Зональность распределение температуры Влияние распределения суши и моря Распределение температуры воздуха по высоте Суточный и годовой ход температуры почвы и воздуха Опасные явления погоды обусловленные температурным режимом


Лесная метеорология. Лекция 4: ТЕПЛОВОЙ РЕЖИМ АТМОСФЕРЫ и земной поверхности тепловой режим земной поверхности и атмосферы: Распределение температуры воздуха в атмосфере и на поверхности суши и его непрерывные

Вопрос 1. Радиационный баланс земной поверхности Вопрос 2. Радиационный баланс атмосферы введение Приток тепла в виде лучистой энергии это часть общего притока тепла, который изменяет температуру атмосферы.

Тепловой режим атмосферы Лектор: Соболева Надежда Петровна, доцент каф. ГЭГХ Температура воздуха Воздух всегда имеет температуру Температура воздуха в каждой точке атмосферы и в разных местах Земли непрерывно

КЛИМАТ НОВОСИБИРСКОЙ ОБЛАСТИ Равнинность Западной Сибири, открытость к Ледовитому океану и обширным районам Казахстана и Средней Азии способствуют глубокому проникновению воздушных масс на территорию Новосибирской

Контрольная работа по теме «Климат России». 1 Вариант. 1. Какой климатообразующий фактор является ведущим? 1) Географическое положение 2) Циркуляция атмосферы 3) Близость океанов 4) Морские течения 2.

Понятия «Климат» и «Погода» на примере метеорологических данных по городу Новосибирску Симоненко Анна Цель работы: выяснить разницу в понятиях «Погода» и «Климат» на примере метеорологических данных по

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО" Кафедра метеорологии

Литература 1 Интернет ресурс http://www.beltur.by 2 Интернет ресурс http://otherreferats.allbest.ru/geography/00148130_0.html 3 Интернет ресурс http://www.svali.ru/climat/13/index.htm 4 Интернет ресурс

Воздушные факторы и погода в зоне их перемещения. Холодович Ю. А. Белорусский национальный технический университет Введение Наблюдения за погодой получили достаточно широкое распространение во второй половине

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

ФИЗИЧЕСКАЯ ГЕОГРАФИЯ МИРА ЛЕКЦИЯ 9 РАЗДЕЛ 1 ЕВРАЗИЯ ПРОДОЛЖЕНИЕ ТЕМЫ КЛИМАТ И АГРОКЛИМАТИЧЕСКИЕ РЕСУРСЫ ВОПРОСЫ, РАССМАТРИВАЕМЫЕ НА ЛЕКЦИИ Циркуляция атмосферы, особенности увлажнения и термического режима

Радиация в атмосфере Лектор: Соболева Надежда Петровна, доцент каф. ГЭГХ Радиация или излучение это электромагнитные волны, которые характеризуются: L длиной волны и ν частотой колебаний Радиация распространяется

МОНИТОРИНГ УДК 551.506 (575/2) (04) МОНИТОРИНГ: ПОГОДНЫЕ УСЛОВИЯ В ЧУЙСКОЙ ДОЛИНЕ В ЯНВАРЕ 2009 г. Г.Ф. Агафонова зав. метеоцентром, А.О. Подрезов канд. геогр. наук, доцент, С.М. Казачкова аспирант Январь

ТЕПЛОВЫЕ ПОТОКИ В КРИОМЕТАМОРФИЧЕСКОЙ ПОЧВЕ СЕВЕРНОЙ ТАЙГИ И ЕЕ ТЕПЛООБЕСПЕЧЕННОСТЬ Остроумов В.Е. 1, Давыдова А.И. 2, Давыдов С.П. 2, Федоров-Давыдов Д.Г. 1, Еремин И.И. 3, Кропачев Д.Ю. 3 1 Институт

18. Прогноз температуры и влажности воздуха у поверхности Земли 1 18. ПРОГНОЗ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ ВОЗДУХА У ПОВЕРХНОСТИ ЗЕМЛИ Локальные изменения температуры T t в некоторой точке определяются индивидуальными

УДК 55.5 ПОГОДНЫЕ УСЛОВИЯ В ЧУЙСКОЙ ДОЛИНЕ ОСЕНЬЮ г. Е.В. Рябикина, А.О. Подрезов, И.А. Павлова WEATHER CONDITIONS IN CHUI VALLEY IN AUTUMN E.V. Ryabikina, A.O. Podrezov, I.A. Pavlova Метеорологическая

Модуль 1 Вариант 1. ФИО Группа Дата 1. Метеорология наука о процессах, происходящих в земной атмосфере (3б) А) химических Б) физических В) климатических 2. Климатология наука о климате, т.е. совокупности

1. Описание климатограммы: Столбцы в климатограмме количество месяцев, снизу отмечены первые буквы месяцев. Иногда изображены 4 сезона, иногда не все месяцы. Слева отмечена шкала температур. Нулевая отметка

МОНИТОРИНГ УДК 551.506 МОНИТОРИНГ: ПОГОДНЫЕ УСЛОВИЯ В ЧУЙСКОЙ ДОЛИНЕ ОСЕНЬЮ г. Э.Ю. Зыскова, А.О. Подрезов, И.А. Павлова, И.С. Брусенская MONITORING: WEATHER CONDITIONS IN CHUI VALLEY IN AUTUMN E.Yu. Zyskova,

Стратификация и вертикальное равновесие насыщенного воздуха Врублевский С. В. Белорусский национальный технический университет Введение Воздух в тропосфере находится в состоянии постоянного перемешивания

"Климатические тенденции в холодный период года в Молдове" Татьяна стаматова, Государственная Гидрометеорологическая Служба 28 октября 2013, Москва, Россия Основные климатические характеристики зимнего

А.Л. Афанасьев, П.П. Бобров, О.А. Ивченко Омский государственный педагогический университет С.В. Кривальцевич Институт оптики атмосферы СО РАН, г. Томск Оценка тепловых потоков при испарении с поверхности

УДК 551.51 (476.4) М Л Смоляров (Могилев, Беларусь) ХАРАКТЕРИСТИКА КЛИМАТИЧЕСКИХ СЕЗОНОВ г. МОГИЛЕВА Введение. Познание климата на научном уровне началось с организации метеорологических станций, оснащенных

АТМОСФЕРА И КЛИМАТЫ ЗЕМЛИ Конспект лекций Осинцева Н.В. Состав атмосферы Азот (N 2) 78,09%, Кислород (O 2) 20,94%, Аргон (Ar) - 0,93%, Углекислый газ (CO 2) 0,03%, Прочие газы 0, 02 %: озон (О 3),

Раз дел ы Код комп.. Тематический план и содержание дисциплины Тематический план Наименование разделов (модулей) Количество часов Аудиторных Самостоятельной работы очно зао чно сокр. очно заоч но сокр.

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Метеорология муссонов Герасимович В.Ю. Белорусский национальный технический университет Введение Муссоны, устойчивые сезонные ветры. Летом, в сезон муссонов, эти ветры обычно дуют с мор на сушу и приносят

Методы решение задач повышенной сложности физико-географической направленности, применение их на уроках и во внеурочное время Учитель географии: Герасимова Ирина Михайловна 1 Определите, в какой из точек,

3. Изменение климата Температура воздуха Данный показатель характеризует среднегодовую температуру воздуха, ее изменение на протяжении определенного периода времени и отклонение от среднего многолетнего

КЛИМАТИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОДА 18 2 глава Средняя по Республике Беларусь температура воздуха за 2013 г. составила +7,5 С, что на 1,7 С выше климатической нормы. В течение 2013 г. в подавляющем большинстве

Проверочная работа по географии Вариант 1 1. Какое годовое количество осадков характерно для резко континентального климата? 1) более 800 мм в год 2) 600-800 мм в год 3) 500-700 мм в год 4) менее 500 мм

Алентьева Елена Юрьевна Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа 118 имени героя советского союза Н. И. Кузнецова города Челябинска КОНСПЕКТ УРОКА ГЕОГРАФИИ

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕПЛОВЫЕ СВОЙСТВА И ТЕПЛОВОЙ РЕЖИМ ПОЧВЫ 1. Тепловые свойства почвы. 2. Тепловой режим и пути его регулирования. 1. Тепловые свойства почвы Тепловой режим почв один из важных показателей, во многом определяющий

МАТЕРИАЛЫ для подготовки к компьютерному тестированию по географии 5 класс (углубленное изучение географии) Учитель: Ю. В. Остроухова ТЕМА Знать Уметь Движение Земли по околосолнечной орбите и своей оси

1.2.8. Климатические условия (ГУ «Иркутский ЦГМС-Р» Иркутского УГМС Росгидромета; Забайкальское УГМС Росгидромета; ГУ «Бурятский ЦГМС» Забайкальского УГМС Росгидромета) В результате значительной отрицательной

Задания А2 по географии 1. Какая из перечисленных горных пород является метаморфической по происхождению? 1) песчаник 2) туф 3) известняк 4) мрамор Мрамор относится к метаморфическим породам. Песчаник

Тепловой баланс определяет температуру, ее величину и изменение на той поверхности, которая непосредственно нагревается солнечными лучами. Нагреваясь, эта поверхность, передает тепло (в длинноволновом диапазоне) как ниже лежащим слоям, так и атмосфере. Саму поверхность называют деятельной поверхностью .

Максимальное значение всех элементов теплового баланса наблюдается в околополуденные часы. Исключение представляет максимум теплообмена в почве, приходящийся на утренние часы. Максимальные амплитуды суточного хода составляющих теплового баланса отмечается летом, минимальные – зимой.

В суточном ходе температуры поверхности, сухой и лишенной растительности, в ясный день максимум наступает после 14 часов, а минимум – около момента восхода Солнца. Нарушать суточный ход температуры может облачность, вызывая смещение максимума и минимума. Большое влияние на ход температуры оказывает влажность и растительность поверхности.

Дневные максимумы температуры поверхности могут составлять +80 о С и более. Суточные колебания достигают 40 о. Величины экстремальных значений и амплитуды температур зависят от широты места, времени года, облачности, тепловых свойств поверхности, ее цвета, шероховатости, характера растительного покрова, ориентировки склонов (экспозиции).

Распространение тепла от деятельной поверхности зависит от состава подстилающего субстрата, и будет определяться его теплоемкостью и теплопроводностью. На поверхности материков подстилающим субстратом являются почвогрунты, в океанах (морях) – вода.

Почвогрунты в общем обладают меньшей чем вода теплоемкостью, и большей теплопроводностью. Поэтому они нагреваются и остывают быстрее, чем вода.

На передачу тепла от слоя к слою затрачивается время, и моменты наступления максимальных и минимальных значений температуры в течение суток запаздывает на каждые 10 см примерно на 3 часа. Чем глубже слой, тем меньше тепла он получает и тем слабее в нем колебания температур. Амплитуда суточных колебаний температур с глубиной уменьшается на каждые 15 см в 2 раза. На глубине в среднем около 1 м суточные колебания температуры почвы «затухают». Слой в котором они прекращаются называется слоем постоянной суточной температуры.

Чем больше период колебаний температур, тем глубже они распространяются. Так в средних широтах слой постоянной годовой температуры находится на глубине 19-20 м, в высоких – на глубине 25 м, а в тропических широтах, где годовые амплитуды температур невелики – на глубине 5-10 м. Моменты наступления максимальных и минимальных температур в течение года запаздывают в среднем на 20-30 суток на каждый метр.

Температура в слое постоянной годовой температуры близка к средней годовой температуре воздуха над поверхностью.

Вода медленнее нагревается и медленнее отдает тепло. К тому же солнечные лучи могут проникать на большую глубину, непосредственно нагревая более глубокие слои. Перенос тепла на глубину идет не столько за счет молекулярной теплопроводности, а в большей мере за счет перемешивания вод турбулентным путем или течениями. При остывании поверхностных слоев воды возникает тепловая конвекция, также сопровождающаяся перемешиванием.

Суточные колебания температуры на поверхности океана в высоких широтах в среднем всего 0,1ºС, в умеренных – 0,4ºС, в тропических – 0,5ºС, Глубина проникновения этих колебаний 15-20 м.

Годовые амплитуды температуры на поверхности океана от 1ºС в экваториальных широтах до 10,2ºС в умеренных. Годовые колебания температуры проникают на глубину 200-300 м.

Моменты максимумов температуры водоемов запаздывают по сравнению с сушей. Максимум наступает около 15-16 часов, минимум – через 2-3 часа после восхода Солнца. Годовой максимум температуры на поверхности океана в северном полушарии приходится на август, минимум – на февраль.

Вопрос 7(атмосфера) --изменение температуры воздуха с высотой. Атмосфера состоит из смеси газов, называемой воздухом, в которой находятся во взвешенном состоянии жидкие и твердые частички. Общая масса последних незначительна в сравнении со всей массой атмосферы. Атмосферный воздух у земной поверхности, как правило, является влажным. Это значит, что в его состав, вместе с другими газами, входит водяной пар, т.е. вода в газообразном состоянии. Содержание водяного пара в воздухе меняется в значительных пределах, в отличие от других составных частей воздуха: у земной поверхности оно колеблется между сотыми долями процента и несколькими процентами. Это объясняется тем, что при существующих в атмосфере условиях водяной пар может переходить в жидкое и твердое состояние и, наоборот, может поступать в атмосферу заново вследствие испарения с земной поверхности. Воздух, как и всякое тело, всегда имеет температуру, отличную от абсолютного нуля. Температура воздуха в каждой точке атмосферы непрерывно меняется; в разных местах Земли в одно и то же время она также различна. У земной поверхности температура воздуха варьирует в довольно широких пределах: крайние ее значения, наблюдавшиеся до сих пор, немного ниже +60° (в тропических пустынях) и около -90° (на материке Антарктиды). С высотою температура воздуха меняется в разных слоях и в разных случаях по-разному. В среднем она сначала понижается до высоты 10-15 км, затем растет до 50-60 км, потом снова падает и т. д. - ВЕРТИКАЛЬНЫЙ ТЕМПЕРАТУРНЫЙ ГРАДИЕНТ син. ВЕРТИКАЛЬНЫЙ ГРАДИЕНТ ТЕМПЕРАТУРЫ – vertical temperature gradient – изменение температуры с ростом высоты над уровнем моря, взятое на единицу расстояния. Считается положительным, если температура с высотой падает. В обратном случае, например, в стратосфере, температуpa при подъеме повышается, и тогда образуется обратный (инверсионный) вертикальный градиент, которому при­сваивается знак минус. В тропосфере В. т. г. в среднем 0,65o/100 м, но в отдельных случаях может превышать 1o/100 м или принимать отрицательные значения при инверсиях температуры. В приземном слое на суше в теплое время года он может быть выше в десятки раз. - Адиабатический процесс - Адиабатический процесс (адиабатный процесс) - термодинамический процесс, происходящий в системе без теплообмена с окружающей средой (), т. е. в адиабатически изолированной системе, состояние которой можно изменить только путем изменения внешних параметров. Понятие адиабатической изоляции является идеализацией теплоизолирующих оболочек или сосудов Дьюара (адиабатные оболочки). Изменение температуры внешних тел не оказывает влияния на адиабатически изолированной системы, а их энергия U может изменяться только за счет работы, совершаемой системой (или над ней). Согласно первому началу термодинамики, при обратимом адиабатическом процессе для однородной системы, где V - объем системы, p - давление, а в общем случае, где aj, - внешние параметры, Аj - термодинамические силы. Согласно второму началу термодинамики, при обратимом адиабатическом процессе энтропия постоянна, а при необратимом - возрастает. Очень быстрые процессы, при которых не успевает произойти теплообмен с окружающей средой, например, при распространении звука, можно рассматривать как адиабатический процесс. Энтропия каждого малого элемента жидкости при его движении со скоростью v остается постоянной, поэтому полная производная энтропии s, отнесенной к единице массы, равна нулю, (условие адиабатичности). Простым примером адиабатического процесса является сжатие (или расширение) газа в теплоизолированном цилиндре с теплоизолированным поршнем: при сжатии температуpa возрастает, при расширении - убывает. Другим примером адиабатического процесса может служить адиабатическое размагничивание, которое используют в методе магнитного охлаждения. Обратимый адиабатический процесс, называется также изоэнтропийным, изображается на диаграмме состояния адиабатой (изоэнтропой). -Поднимающийся воздух, попадая в разреженную среду, расширяется, происходит его охлаждение, а опускающийся, наоборот, благодаря сжатию нагревается. Такое изменение температуры за счет внутренней энергии, без притока и отдачи тепла, называется адиабатическим. Адиабатические изменения температуры происходят по сухоадиабатическому и влажноадиабатическому законам. Соответственно различают и вертикальные градиенты изменения температуры с высотой. Сухоадиабатический градиент - это изменение температуры сухого или влажного ненасыщенного воздуха на 1° С на каждые 100 метров поднятия или опускания, а влажноадиабатический градиент - это понижение температуры влажного насыщенного воздуха меньше чем на 1° С на каждые 100 метров поднятия.

-Инверсия в метеорологии означает аномальный характер изменения какого-либо параметра в атмосфере с увеличением высоты. Наиболее часто это относится к температурной инверсии, то есть к увеличению температуры с высотой в некотором слое атмосферы вместо обычного понижения (см. атмосфера Земли).

Различают два типа инверсии:

1.приземные инверсии температуры, начинающиеся непосредственно от земной поверхности (толщина слоя инверсии - десятки метров)

2.инверсии температуры в свободной атмосфере (толщина слоя инверсии достигает сотни метров)

Инверсия температуры препятствует вертикальным перемещениям воздуха и способствует образованию дымки, тумана, смога, облаков, миражей. Инверсия сильно зависит от местных особенностей рельефа. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °C и более. Наибольшей мощностью обладают приземные инверсии температуры в Восточной Сибири и в Антарктиде в зимний период.

Билет.

Суточный ход температуры воздуха- изменение температуры воздуха в течение суток. Суточный ход температуры воздуха в общем отражает ход температуры земной поверхности, но моменты наступления максимумов и минимумов несколько запаздывают, максимум наблюдается в 14 часов, минимум-после восхода Солнца. Суточные колебания температуры воздуха зимой заметны до высоты 0,5 км, летом-до 2 км.

Суточная амплитуда температуры воздуха- разница между максимальной и минимальной температурами воздуха в течение суток. Суточная амплитуда температуры воздуха наибольшая в тропических пустынях-до 40 0 , в экваториальных и умеренных широтах она уменьшается. Суточная амплитуда меньше зимой и в облачную погоду. Над водной поверхностью она значительно меньше, чем над сушей; над растительным покровом меньше, чем над оголенными поверхностями.

Годовой ход температуры воздуха определяется прежде всего широтой места. Годовой ход температуры воздуха- изменение среднемесячной температуры в течение года. Годовая амплитуда температуры воздуха- разница между максимальной и минимальной среднемесячными температурами. Выделают четыре типа годового хода температуры; в каждом типе два подтипа-морской и континентальный, характеризующиеся различной годовой амплитудой температуры. В экваториальном типе годового хода температуры наблюдается два небольших максимума и два небольших минимума. Максимумы наступают после дней равноденствия, когда солнце в зените над экватором. В морском подтипе годовая амплитуда температуры воздуха составляет 1-2 0 , в континентальном 4-6 0 . Температура весь год положительная. В тропическом типе годового хода температуры выделяется один максимум после летнего солнцестояния и один минимум-после дня зимнего солнцестояния в Северном полушарии. В морском подтипе годовая амплитуда температур равна 5 0 , в континентальном 10-20 0 . В умеренном типе годового хода температуры также наблюдается один максимум после дня летнего солнцестояния и один минимум после дня зимнего солнцестояния в Северном полушарии, зимой температуры отрицательные. Над океаном амплитуда сосотавляет 10-15 0 , над сушей увеличивается по мере удаления от океана: на побережье-10 0 , в центре материка-до 60 0 . В полярном типе годового хода температуры сохраняется один максимум после дня летнего солнцестояния и один минимум после дня зимнего солнцестояния в Северном полушарии, температура большую часть года-отрицательная. Годовая амплитуда на море равна 20-30 0 , на суше-60 0 . Выделенные типы отражают зональный ход температуры, обусловленный притоком солнечной радиации. На годовой ход температуры большое влияние оказывает перемещение воздушных масс.

Билет.

Изотермы -линии, соединяющие на карте точки с одинаковыми температурами.

Летом материки больше прогреты, изотермы над сушей изгибаются в строну полюсов.

На карте зимних температур (декабрь в Северном полушарии и июль в Южном) изотермы значительно отклоняются от параллелей. Над океанами изотермы далеко продвигаются к высоким широтам, образуя «языки тепла»; над сушей изотермы отклоняются к экватору.

Средняя годовая температура Северного полушария +15,2 0 С, а Южного +13,2 0 С. Минимальная температура в Северном полушарии достигла -77 0 С (Оймякон) и -68 0 С (Верхоянск). В Южном полушарии минимальные температуры гораздо ниже; на станциях «Советская» и «Восток» была отмечена температура -89,2 0 С. Минимальная температура в безоблачную погоду в Антарктиде может опускаться до -93 0 С. Самые высокие температуры наблюдаются в пустынях тропического пояса, в Триполи +58 0 С; в Калифорнии, в долине Смерти отмечена температура +56,7 0 .

О том, насколько сильно материки и океаны влияют на распредление температур, дают представлние карты изаномал. Изаномалы- линии, соединяющие точки с одинаковыми аномалиями температур. Аномалии представляют собой отклонения фактических температур от среднеширотных. Аномалии бывают положительные и отрицательные. Положительные наблюдаются летом над прогретыми материками

Тропики и полярные круги нельзя считать действительными границами тепловых поясов(система классификации климатов по темп-ре воздуха) , так как на распределение температур влияет еще ряд факторов: рапределение суши и воды, течений. За границы тепловых поясов приняты изотермы. Жаркий пояс распологаетя между годовыми изотермами 20 0 С и оконтуривает полосу дикорастущих пальм. Границы умернного пояса проводятся по изотерме 10 0 С самого теплого месяца. В Северном полушарии граница совпадает с распространением лесотундры. Граница холодного пояса проходит по изотерме 0 0 С самого теплого месяца. Пояса мороза распологаются вокруг полюсов.

Почва – компонент климатической системы, являющийся наиболее активным аккумулятором солнечного тепла, поступающего на поверхность земли.

Суточный ход температуры подстилающей поверхности имеет один максимум и один минимум. Минимум наступает около восхода солнца, максимум – в послеполуденные часы. Фаза суточного хода и его суточная амплитуда зависят от времени года, состояния подстилающей поверхности, количества и осадков, а также, от местоположения станций, типа почвы и ее механического состава.

По механическому составу почвы делятся на песчаные, супесчаные и суглинистые, различающиеся между собой по теплоемкости, температуропроводности и генетическим свойствам (в частности, по цвету). Темные почвы поглощают больше солнечной радиации и, следовательно, сильнее прогреваются, чем светлые. Песчаные и супесчаные почвы, характеризующиеся меньшей , теплее суглинистых.

В годовом ходе температуры подстилающей поверхности прослеживается простая периодичность с минимумом в зимнее время и максимумом летом. На большей части территории России наиболее высокая температура почвы наблюдается в июле, на Дальнем Востоке в прибрежной полосе Охотского моря, на и – в июле – августе, на юге Приморского края – в августе.

Максимальные температуры подстилающей поверхности в течение большей части года характеризуют экстремальное термическое состояние почвы, и лишь для самых холодных месяцев – поверхности .

Условиями погоды, благоприятными для достижения подстилающей поверхностью максимальных температур, являются: малооблачная погода, когда максимален приток солнечной радиации; малые скорости ветра или штиль, поскольку повышение скорости ветра способствует увеличению испарения влаги из почвы; малое количество осадков, так как сухая почва характеризуется меньшей тепло- и температуропроводностью. Кроме того, в сухой почве меньше затраты тепла на испарение. Таким образом, абсолютные максимумы температуры обычно отмечаются в наиболее ясные солнечные дни на сухой почве и, обычно, в послеполуденные часы.

Географическое распределение средних из абсолютных годовых максимумов температуры подстилающей поверхности сходно с распределением изогеотерм средних месячных температур поверхности почвы в летние месяцы. Изогеотермы имеют в основном широтное направление. Влияние морей на температуру поверхности почвы проявляется в том, что на западном побережье Японского и , на Сахалине и Камчатке широтное направление изогеотерм нарушается и становится близким к меридиональному (повторяет очертания береговой линии). На Европейской части России значения среднего из абсолютных годовых максимумов температуры подстилающей поверхности изменяются от 30–35°С на побережье северных морей до 60–62°С на юге Ростовской области, в Краснодарском и Ставропольском краях, в Республике Калмыкия и Республике Дагестан. В районе средние из абсолютных годовых максимумов температуры поверхности почвы на 3–5°С ниже, чем в близлежащих равнинных территориях, что связано с влиянием возвышенностей на увеличение осадков в данном районе и увлажнение почвы. Равнинные территории, закрытые возвышенностями от преобладающих ветров, отличаются пониженным количеством осадков и меньшими скоростями ветра, а, следовательно, и повышенными значениями экстремальных температур поверхности почвы.

Наиболее быстрый рост экстремальных температур с севера на юг происходит в зоне перехода от лесной и зон к зоне , что связано с уменьшением осадков в степной зоне и с изменением состава почв. На юге при общем низком уровне содержания влаги в почве одним и тем же изменениям влажности почвы соответствуют более значительные различия в температуре почв, отличающихся между собой по механическому составу.

Так же резко происходит уменьшение средних из абсолютных годовых максимумов температуры подстилающей поверхности с юга на север в северных районах Европейской части России, при переходе от лесной зоны к зонам и тундры – районам избыточного увлажнения. Северные районы Европейской части России, благодаря активной циклонической деятельности, кроме всего прочего, отличаются от южных районов повышенным количеством облачности, что резко снижает приход солнечной радиации к земной поверхности.

На Азиатской части России наиболее низкие из средних абсолютных максимумов имеют место на островах и севере (12–19°С). По мере продвижения к югу происходит увеличение экстремальных температур, причем на севере Европейской и Азиатской частей России это увеличение происходит более резко, чем на остальной территории. В районах с минимальным количеством осадков (например, районы междуречья Лены и Алдана) выделяются очаги повышенных значений экстремальных температур. Так как районы отличаются очень сложным , то экстремальные температуры поверхности почвы для станций, находящихся в различных формах рельефа (горные районы, котловины, низменности, долины крупных сибирских рек), сильно отличаются. Наибольших значений средние из абсолютных годовых максимумов температуры подстилающей поверхности достигают на юге Азиатской части России (кроме прибрежных районов). На юге Приморского края средние из абсолютных годовых максимумов ниже чем в континентальных районах, расположенных на той же широте. Здесь их значения достигают 55–59°С.

Минимальные температуры подстилающей поверхности наблюдаются также при вполне определенных условиях: в наиболее холодные ночи, в часы близкие к восходу солнца, при антициклональном режиме погоды, когда малая облачность благоприятствует максимальному эффективному излучению.

Распределение изогеотерм средних из абсолютных годовых минимумов температуры подстилающей поверхности аналогично распределению изотерм минимальных температур воздуха. На большей части территории России, кроме южных и северных районов, изогеотермы средних из абсолютных годовых минимумов температуры подстилающей поверхности принимают меридиональную направленность (убывают с запада на восток). На Европейской части России средние из абсолютных годовых минимумов температуры подстилающей поверхности изменяются от – 25°С в западных и южных районах до –40…–45°С в восточных и, особенно, северо-восточных районах (Тиманский кряж и Большеземельская тундра). Самые высокие значения средних из абсолютных годовых минимумов температуры (–16…–17°С) имеют место на Черноморском побережье. На большей части Азиатской части России средние из абсолютных годовых минимумов варьируют в пределах –45…–55°С. Столь незначительное и достаточно равномерное распределение температуры на огромной территории связано с однотипностью условий образования минимальных температур в районах, подверженных влиянию сибирского .

В районах Восточной Сибири со сложным рельефом, особенно в Республике Саха (Якутия), наряду с радиационными факторами, существенное влияние на уменьшение минимальных температур оказывают особенности рельефа. Здесь в сложных условиях горной страны во впадинах и котловинах создаются особенно благоприятные условия для выхолаживания подстилающей поверхности. В Республике Саха (Якутия) имеют место наиболее низкие значения средних из абсолютных годовых минимумов температуры подстилающей поверхности на территории России (до –57…–60°С).

На побережье арктических морей, в связи с развитием здесь активной зимней циклонической деятельности, минимальные температуры выше, чем во внутренних районах. Изогеотермы имеют почти широтное направление, и понижение средних из абсолютных годовых минимумов с севера на юг происходит довольно быстро.

На побережье изогеотермы повторяют очертания берегов. Влияние Алеутского минимума проявляется в повышении средних из абсолютных годовых минимумов в прибрежной зоне по сравнению с внутренними районами, особенно на южном побережье Приморского края и на Сахалине. Средние из абсолютных годовых минимумов составляют здесь –25…–30°С.

От величины отрицательных температур воздуха в холодный период года зависит промерзание почвы. Важнейшим фактором, препятствующим промерзанию почвы, является наличие снежного покрова. Такие его характеристики, как время образования, мощность, продолжительность залегания определяют глубину промерзания почвы. Позднее установление снежного покрова способствует большему промерзанию почвы, так как в первую половину зимы интенсивность промерзания почвы наибольшая и, наоборот, раннее установление снежного покрова препятствует значительному промерзанию почвы. Влияние толщины снежного покрова наиболее сильно проявляется в районах с низкой температурой воздуха.

При одних и тех же глубина промерзания зависит от типа почвы, ее механического состава и влажности.

Например, в северных районах Западной Сибири при низкой и мощном снежном покрове глубина промерзания почвы меньше, чем в более южных и теплых районах с малым . Своеобразная картина имеет место в районах с неустойчивым снежным покровом (южные районы Европейской части России), где он может способствовать увеличению глубины промерзания почвы. Это связано с тем, что при частой смене морозов и оттепелей на поверхности тонкого снежного покрова образуется ледяная корка, коэффициент теплопроводности которой в несколько раз больше теплопроводности снега и воды. Почва при наличии такой корки значительно быстрее охлаждается и промерзает. Уменьшению глубины промерзания почвы способствует наличие растительного покрова, так как он задерживает и накапливает снег.