При каком условии происходит деление ядер урана. Ядер деление. Реактор с жидкометаллическим охлаждением



































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Вид занятия. Лекция.

Цель.

  • Дидактическая . Дать понятие о реакции деления атомных ядер, изучить физические основы получения ядерной энергии при делении тяжелых атомных ядер; рассмотреть управляемые цепные реакции, устройство и принцип действия ядерных реакторов; усвоить информацию о применении радиоактивных изотопов и биологическом действии радиоактивных излучений
  • Воспитательная . Воспитывать умение работать в коллективе, чувство ответственности за общее дело, воспитывать заинтересованность дисциплиною, стремление получить новые знания самостоятельно; способствовать формированию познавательного интереса, развитию технических навыков в процессе обучения.
  • Методическая . Применение компьютерных технологий: презентаций, интерактивных лекций, виртуальных моделей.

Методы: словесный, наглядный; эвристический, беседа; фронтальный опрос

Структура урока

№1 Организационная часть урока

1. Приветствие.

2. Проверка наличия учеников и готовности их к уроку.

№2. Сообщение темы, цели и основных задач урока.

План лекции

1. Деление ядер урана при облучении нейтронами.

1.1. Выделение энергии при делении ядер урана.

1.2.Цепная реакция и условия ее возникновения.

  1. Ядерный реактор. Атомная электростанция.
  2. 2.1. Основные элементы ядерного реактора и его виды.

    2.2. Применение ядерной энергии.

  3. Биологическое действие радиоактивных излучений.

№3. Актуализация опорных знаний учеников:

1.Состав ядра.

2.Радиоактивность.

3. Ядерные реакции.

4. - распад.

5. распад.

6. Энергетический выход реакции.

7. Дефект масс.

8. Энергия связи ядра.

9. Удельная энергия связи ядра.

Лист опроса (проверка знания формул, законов, закономерностей) (слайд №3 ).

№4. Мотивация учебной деятельности учеников

Структурные элементы урока

1. Деление ядер урана при облучении нейтронами

Атомные ядра, содержащие большое число нуклонов, неустойчивы и могут распадаться. В 1938 г. немецкие ученые Отто Ганн и Франц Штрассман наблюдали деление ядра урана U под действием медленных нейтронов. Однако правильное истолкование этого факта, именно как деление ядра урана захватившего, нейтрон, было дано в начале 1939 г. английским физиком О. Фришем совместно с австрийским физиком Л. Мейтнер. Делением ядра называется ядерная реакция деления тяжелого ядра, поглотившего нейтрон, на две приблизительно равные части (осколками деления).

Возможность деления тяжелых ядер можно также объяснить с помощью графика зависимости удельной энергии связи от массового числа А(слайд №4).

График зависимости удельной энергии связи от массового числа

Удельная энергия связи ядер атомов, занимающих в периодической системе последние места 200), примерно на 1 МэВ меньше удельной энергии связи в ядрах элементов, находящихся в середине периодической системы 100). Поэтому процесс деления тяжелых ядер на ядра элементов средней части периодической системы является “энергетически выгодным”. Система после деления переходит в состояние с минимальной внутренней энергией. Ведь чем больше энергия связи ядра, тем большая энергия должна выделяться при образовании ядра и, следовательно, тем меньше внутренняя энергия образовавшейся вновь системы.

При делении ядра энергия связи, приходящаяся на каждый нуклон, увеличивается на 1 МэВ и общая выделяющаяся энергия должна быть огромной - порядка 200 МэВ на ядро. Не при какой другой ядерной реакции (не связанной с делением) столь больших энергий не выделяется. Сопоставим эту энергию с энергией, выделяемой при сгорании топлива. При делении 1 кг урана-235 выделится, энергия, равная . При сгорании же 1 кг угля выделится энергия, равная 2,9·10 6 Дж, т.е. в 28 млн. раз меньше. Этот расчет хорошо иллюстрирует преимущество ядерной энергетики.

Непосредственные измерения энергии, выделяющейся при делении ядра урана U, подтвердили приведенные соображения и дали величину 200 МэВ . Причем большая часть этой энергии (168 МэВ) приходится на кинетическую энергию осколков.

Выделяющаяся при делении ядра энергия имеет электростатическое, а не ядерное происхождение. Большая кинетическая энергия, которую имеют осколки, возникает вследствие их кулоновского отталкивания.

Использование именно нейтронов для деления ядер обусловлено их электро нейтральностью. Отсутствие кулоновского отталкивания протонами ядра позволяет нейтронам беспрепятственно проникать в атомное ядро. Временный захват нейтрона нарушает хрупкую стабильность ядра, обусловленную тонким балансом сил кулоновского отталкивания и ядерного притяжения. Возникающие пространственные колебания нуклонов возбужденного ядра (обозначим U*) являются неустойчивыми. Избыток нейтронов в центре ядра означает избыток протонов на периферии. Их взаимное отталкивание приводит к искусственной радиоактивности изотопа U*, т. е. к его делению на ядра меньшей массы, называемые осколками деления. Причем наиболее вероятным оказывается деление на осколки, массы которых относятся примерно как 2:3. Большинство крупных осколков имеют массовое число А в пределах 135-145, а мелкие от 90 до 100. В результате реакции деления ядра урана U образуются два или три нейтрона. Одна из возможных реакций деления ядра урана протекает по схеме:

Эта реакция протекает с образованием трех нейтронов. Возможна реакция с образованием двух нейтронов:

1. Задание ученикам: восстановить реакцию.

2. Задание ученикам : подпишите элементы рисунка.

1.1 Выделение энергии при деления ядер урану

Выделяющаяся при делении ядра энергия имеет электростатическое, а не ядерное происхождение. Большая кинетическая энергия, которую имеют осколки, возникает вследствие их кулоновского отталкивания. При полном делении всех ядер, имеющихся в 1 г урана, выделяется столько энергии, сколько выделяется при сгорании 2,5 т нефти.

Процесс деления атомного ядра можно объяснить на основе капельной модели ядра. Согласно этой модели сгусток нуклонов напоминает капельку заряженной жидкости. Ядерные силы между нуклонами являются короткодействующими подобно силам, действующим между молекулами жидкости. Наряду с большими силами электростатического отталкивания между протонами, стремящимися разорвать ядро на части, действуют еще большие ядерные силы притяжения. Эти силы удерживают ядро от распада.

Ядро урана-235 имеет форму шара. Поглотив лишний нейтрон, ядро начинает деформироваться, приобретая вытянутую форму (слайд №5 ). Ядро растягивается до тех пор, пока силы электрического отталкивания между половинками вытянутого ядра не начинают преобладать над силами ядерного притяжения, действующими в перешейке. После этого ядро разрывается на две части. Под действием кулоновских сил отталкивания эти осколки разлетаются со скоростью, равной 1/30 скорости света. (видеофрагмент №6 )

1.2 Цепная реакция и условия её возникновения

Любой из нейтронов, вылетающий из ядра в процессе деления, может в свою очередь вызвать деление соседнего ядра, которое также испускает нейтроны, способные вызвать дальнейшее деление. В результате число делящихся ядер очень быстро увеличивается. Возникает цепная реакция. Цепной ядерной реакцией называется реакция, в которой нейтроны образуются как продукты этой реакции, способные вызывать деление других ядер. (слайд №7 ).

Суть этой реакции заключается в том, что испущенные при делении одного ядра N нейтронов могут вызвать деление N ядер, в результате чего будет испущено N 2 новых нейтронов, которые вызовут деление N 2 ядер, и т. д. Следовательно, число нейтронов, рождающихся в каждом поколении, нарастает в геометрической прогрессии. В целом процесс носит лавинообразный характер, протекает весьма быстро и сопровождается выделением огромного количества энергии.

Скорость цепной реакции деления ядер характеризуют коэффициентом размножения нейтронов.

Коэффициент размножения нейтронов k- отношение числа нейтронов в данном этапе цепной реакции к их числу в предыдущем этапе.

Если k 1, то число нейтронов увеличивается с течением времени или остаётся постоянным и цепная реакция идет.

Если k < 1, то число нейтронов убывает и цепная реакция невозможна.

При k = 1 реакция протекает стационарно: число нейтронов сохраняется неизменным. Коэффициент размножения k может стать равным единице лишь при условии, что размеры реактора и соответственно масса урана превышают некоторые критические значения.

Критической массой называют наименьшую массу делящегося вещества, при которой может протекать цепная реакция.

Это равенство k = 1 необходимо поддерживать с большой точностью. Уже при k = 1,01 почти мгновенно произойдет взрыв. Число нейтронов, образующихся при делении ядер, зависит от объема урановой среды. Чем больше этот объем, тем большее число нейтронов выделяется при делении ядер. Начиная с некоторого минимально-критического объема урана, имеющего определенную критическую массу, реакция деления ядер становится самоподдерживающейся. Очень важным фактором, влияющим на ход ядерной реакции, является наличие замедлителя нейтронов. Дело в том, что ядра урана-235 делятся под действием медленных нейтронов. А при делении ядер образуются быстрые нейтроны. Если быстрые нейтроны замедлить, то большая их часть захватится ядрами урана-235 с последующим делением ядер. В качестве замедлителей используются такие вещества, как графит, вода, тяжелая вода и некоторые другие.

Для чистого урана U, имеющего форму шара, критическая масса приблизительно равна 50 кг. При этом радиус шара равен примерно 9 см. Применяя замедлитель нейтронов и отражающую нейтроны оболочку из бериллия, удалось снизить критическую массу до 250 г.

(видеофрагмент №8 )

2. Ядерный реактор

2.1. Основные элементы ядерного реактора него виды

Ядерным реактором называется устройство, в котором выделяется тепловая энергия в результате управляемой цепной реакции деления ядер.

Впервые управляемая цепная реакция деления ядер урана была осуществлена в 1942 году в США под руководством итальянского физика Ферми. Цепная реакция с коэффициентом размножения нейтроновk= 1,0006 длилась в течение 28 минут, после чего реактор был остановлен.

Основными элементами ядерного реактора являются:

Ядерное топливо располагается в активной зоне в виде вертикальных стержней, называемых тепловыделяющими элементами (ТВЭЛ). ТВЭЛы предназначены для регулирования мощности реактора. Масса каждого топливного стержня значительно меньше критической, поэму в одном стержне цепная реакция происходить не может. Она начинается после погружения в активную зону всех урановых стержней. Активная зона окружена слоем вещества, отражающего нейтроны (отражатель), и защитной оболочкой из бетона, задерживающего нейтроны и другие частицы.

Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор. При выдвинутых из активной зоны реактора стержнях k > 1, а при полностью вдвинутых - к < 1. Вдвигая стержни внутрь активной зоны, можно в любой момент времени приостановить развитие цепной реакции. Управление ядерными реакторами осуществляется дистанционно с помощью ЭВМ.

Реактор на медленных нейтронах. Наиболее эффективное деление ядер U происходит под действием медленных нейтронов. Такие реакторы называются реакторами на медленных нейтронах. Вторичные нейтроны, образующиеся в результате реакции деления, являются быстрыми. Для того чтобы их последующее взаимодействие с ядрами U в цепной реакции было наиболее эффективно, их замедляют, вводя в активную зону замедлитель - вещество (тяжелая вода, графит)

Вопрос ученикам: Почему применяются именно эти вещества? Тяжелая вода – содержит большое количество нейтронов, которые сталкиваясь с быстрыми нейтронами, выделяющимися в результате деления, замедляют их в соответствии с законом сохранения импульса.

Реактор на быстрых нейтронах. Природного урана-235 на Земле очень мало, всего лишь 0,715% от всей массы урана. Основную часть природного урана (99,28%) составляет изотоп урана-238, который непригоден в качестве “ядерного топлива”.

В реакторах на тепловых (т. е. медленных) нейтронах уран используется лишь на 1-2%. Полное использование урана достигается в реакторах на быстрых нейтронах, в которых обеспечивается также воспроизводство нового ядерного горючего в виде плутония.

Преимущество реакторов на быстрых нейтронах в том, что при работе образуется значительное количество плутония Pu, важнейшее свойство изотопа Pu - его способность делиться под действием тепловых нейтронов, как и изотопU , который затем можно использовать в качестве ядерного топлива. Эти реакторы называются реакторами-размножителями, так как они воспроизводят делящийся материал. Поэтому очень важной задачей ядерной энергетики ближайшего будущего является переход от обычных реакторов к реакторам-размножителям (бридерам), которые служат не только источниками энергии, но и “фабриками плутония”. Перерабатывая уран-238 в плутоний, эти реакторы резко увеличивают запасы “ядерного топлива”.

С помощью ядерных реакций получены трансурановые элементы (следующие за ураном), т. е. элементы более тяжелые, чем уран. Эти элементы не существуют в природе, они получены искусственным путем.

Первый элемент с зарядовым числом, которое больше 92, получили в 1940 г. американские ученые в Калифорнийском университете, когда облучали уран нейтронами. Получение трансурановых элементов рассмотрим на примере получения нептуния и плутония:

Период полураспада нептуния - 2,3 суток, плутония – 2,44·10 4 лет, поэму его можно накапливать в больших количествах, что имеет большое значение при использовании ядерной энергии. На сегодняшний день получены следующие трансурановые элементы: америций (95), берклий (97), калифорний (98), эйнштейний (99), фермий (100), м (101), нобелий (102), лоуренсий (103), курчатовий (104).

2.2. Применение ядерной энергии

Преобразование внутренней энергии атомных ядер в электрическую энергию. Ядерный реактор является основным элементом атомной электростанции (АЭС), преобразующей тепловую ядерную энергию в электрическую. В результате деления ядер в реакторе выделяется тепловая энергия. Эта энергия преобразуется в энергию пара, вращающего паровую турбину. Паровая турбина в свою очередь вращает ротор генератора, вырабатывающего электрический ток.

Таким образом, преобразование энергии происходит по следующей схеме:

внутренняя энергия ядер урана кинетическая энергия нейтронов и осколков ядер внутренняя энергия воды внутренняя энергия пара кинетическая энергия пара кинетическая энергия ротора турбины и ротора генератора электрическая энергия.(видеофрагмент №11 ).

Задание ученикам: подпишите основные элементы реактора.(слайд №12 )

Проверка задания (слайд №13 )

При каждом акте деления выделяется энергия около 3,2·10 -11 Дж. Тогда мощности 3000 МВт соответствует примерно 10 18 актов деления в секунду. При делении ядер стенки ТВЭЛов сильно нагреваются. Отвод тепла из активной зоны осуществляется теплоносителем – водой. В мощных реакторах зона нагревается до температуры 300 °С. Во избежание закипания вода выводится из активной зоны в теплообмен под давлением порядка 10 7 Па (100 атм). В теплообменнике радиоактивная вода(теплоноситель), циркулирующая в первом контуре, отдает тепло обычной воде, циркулирующей во втором контуре. Передаваемое тепло превращает воду во втором контуре в пар. Этот пар с температурой около 230 °С под давлением 3·10 6 Па направляется на лопатки паровой турбины, а она вращает ротор генератора электрической энергии. Применение ядерной энергии для преобразования ее в электрическую впервые было осушествлено в1954 году в СССР в г. Обнинске. В 1980 г. на Белоярской АЭС состоялся пуск первого в мире реактора на быстрых нейтронах

Успехи и перспективы развития атомной энергетики

Сравнение экологического действия от работы ЭС разных видов.

Экологическое влияние ГЭС (слайд №14 ):

  • затопление больших площадей плодородных земель;
  • подъйом уровня грунтовых вод;
  • заболоченность территорий и выведение из посевных значительных площадей земли;
  • “цветение” водойомов, что приводит к гибели рыб и других жителей водойомов.

Экологическое влияние ТЭС (слайд №15 ):

Экологическое влияние АЭС(слайд №16 ):

  • добыча и переработка урановых руд;
  • утилизация радиоактивных отходов;
  • значительное тепловое загрязнение воды, вследствие её нагревания.

На слайде №17 размещена таблица, показывающая распределение электроэнергии, которую вырабатывают разные электростанции.

Невозможно не вспомнить о событиях 1986 року (слайд №18 ). Последствия взрыва (слайд №19-22 )

Ядерные реакторы устанавливаются на атомных подводных лодках и ледоколах(К 19).

Ядерное оружие

Неуправляемая цепная реакция с большим коэффициентом размножения нейтронов осуществляется в ядерной бомбе. Для того, чтобы происходило почти мгновенное выделение энергии (взрыв), реакция должна идти на быстрых нейтронах (без применения замедлителей). Взрывчатым веществом служит чистый уран U или плутоний Pu.

При взрыве бомбы температура достигает миллионов кельвин. При такой температуре резко повышается давление и образуется мощная взрывная волна. Одновременно возникает мощное излучение. Продукты цепной реакции при взрыве бомбы сильно радиоактивны и опасны для жизни.

В 1945 г. США применили атомные бомбы против Японии (видеофрагмент №23-25 ). Последствия испытаний атомного оружия (видеофрагмент №26 )

Медицина

1. Биологическое действие радиоактивных излучений.

Радиоактивное излучение включает в себя гамма- и рентгеновское излучение, электроны, протоны, частицы, ионы тяжелых элементов. Его называют также ионизирующим излучением, так как, проходя через живую ткань, оно вызывает ионизацию атомов.

Даже слабые излучения радиоактивных веществ оказывают очень сильное воздействие на все живые организмы, нарушая жизнедеятельность клеток. При большой интенсивности излучения живые организмы погибают. Опасность излучения усугубляется тем, что они не вызывают никаких болевых ощущений даже при смертельных дозах. Инновации в медицине (слайд №27-29 )

Механизм поражающего биологические объекты действия еще недостаточно изучен. Но ясно, что оно сводится к ионизации атомов и молекул и это приводит к изменению их химической активности. Наиболее чувствительны к излучениям ядра клеток, особенно клеток, которые быстро делятся. Поэтому в первую очередь излучения поражают костный мозг, из-за чего нарушается процесс образования крови. Далее наступает поражение клеток пищеварительного тракта и других органов.

Доза излучения. Характер воздействия ионизирующего излучения зависит от дозы поглощенного излучения и его вида.

Доза поглощенного излучения - отношение энергии излучения поглощенной облучаемым телом, к его массе: .

В СИ дозу поглощенного излучения выражают в греях (1 Гр):

1 Гр равен дозе поглощенного излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2·10 -3 Гр на человека. Международная комиссия по радиационной защите установила для лиц, работающих с излучением, предельно допустимую за год дозу 0,05 Гр. Доза излучения в 3 - 10 Гр, полученная за короткое время, смертельна.

На практике широко используется внесистемная единица дозы излучения – рентген (1 Р). 1 Гр соответствует примерно 100 Р.

Эквивалентная доза.

В связи с тем, что при одной и той же дозе поглощения разные излучения вызывают различные биологические эффекты, для оценки этих эффектов была введена величина, называемая эквивалентной дозой (Н).

Эквивалентная доза поглощенного излучения определяется как произведение дозы поглощенного излучения на коэффициент качества:

Единица эквивалентной дозы - зиверт (1 Зв).

1Зв равен эквивалентной дозе, при которой доза поглощенного -излучения равна 1 Гр.

Величина эквивалентной дозы определяет относительно безопасные и очень опасные для живого организма дозы облучения.

При оценке воздействий ионизирующих излучений на живой организм учитывают и то, что одни части тела (органы, ткани) более чувствительны, чем другие. Например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе.

Другими словами, каждый орган и ткань имеет определенный коэффициент радиационного риска (для легких, например, он равен 0,12, а для щитовидной железы - 0,03).

Поглощенная и эквивалентная дозы зависят от времени облучения. При прочих равных условиях эти дозы тем больше, чем больше время облучения.

Пищевые продукты, которые поддаются радиационной обработке (слайд №30 ).

Полулетальная поглощенная доза* для некоторых живых организмов (слайд №31 ).

Биологическое действие ионизированного облучения на человека (слайд №32 ).

Уровень радиационного облучения населения (слайд №33 ).

Защитное действие от ионизированного излучения сооружений и материалов (слайд №34 )

2. Защита организмов от излучения.

При работе с любым источником радиации необходимо принимать меры по радиационной защите.

Самый простой метод защиты - это удаление персонала от источника излучения на достаточно большое расстояние. Ампулы с радиоактивными препаратами не следует брать руками. Надо пользоваться специальными щипцами с длинной ручкой.

Для защиты от излучения используют преграды из поглощающих материалов. Например, защитой от -излучения может служить слой алюминия толщиной в несколько миллиметров. Наиболее сложна защита от излучения и нейтронов из-за большой проникающей способности. Лучшим поглотителем лучей является свинец. Медленные нейтроны хорошо поглощаются бором и кадмием. Быстрые нейтроны предварительно замедляются с помощью графита.(видеофрагмент №35 ).

Вопросы к ученикам в ходе изложения нового материала

1. Почему нейтроны оказываются наиболее удобными частицами для бомбардировки атомных ядер?

2. Что происходит при попадании нейтрона в ядро урана?

3. Почему при делении ядер урана выделяется энергия?

4. От чего зависит коэффициент размножения нейтронов?

5. В чем заключается управление ядерной реакцией?

6. Для чего нужно, чтобы масса каждого уранового стержня была меньше критической массы?

7. Для чего нужны регулирующие стержни? Как ими пользуются?

8. Для чего в ядерном реакторе используется замедлитель нейтронов?

9. В чем причина негативного воздействия радиации на живые организмы?

10. Какие факторы следует учитывать при оценке воздействий ионизирующих излучений на живой организм?

№5. Подведение итогов урока

То, что при делении тяжёлых ядер выделяется энергия, непосредственно следует из зависимости удельной энергии связи ε = E св (A,Z)/A от массового числа А (Рис. 2). При делении тяжёлого ядра образуются более лёгкие ядра, в которых нуклоны связаны сильнее, и часть энергии при делении высвобождается.
Как правило, деление ядер сопровождается вылетом 1 – 4 нейтронов.
Выразим энергию деления Q дел через энергии связи начального и конечных ядер. Энергию начального ядра, состоящего из Z протонов и N нейтронов, и имеющего массу M(A,Z) и энергию связи E св (A,Z), запишем в следующем виде:

M(A,Z)c 2 = (Zm p + Nm n)c 2 – E св (A,Z).

Деление ядра (A,Z) на 2 осколка (A 1 ,Z 1) и (А 2 ,Z 2) сопровождается образованием N n = A – A 1 – A 2 мгновенных нейтронов. Если ядро (A,Z) разделилось на осколки с массами M 1 (A 1 ,Z 1), M 2 (A 2 ,Z 2) и энергиями связи E св1 (A 1 ,Z 1), E св2 (A 2 ,Z 2), то для энергии деления имеем выражение:

Q дел = {M(A,Z) – }c 2 = E св1 (A 1 ,Z 1) + E св (A 2 ,Z 2) – E св (A,Z),

Причём

A = A 1 + A 2 + N n , Z = Z 1 + Z 2 .

На Рис. 26 приведена поисковая форма калькулятора «Деление ядер » с примером формирования поискового предписания по определению энергетического порога и энергии реакции спонтанного деления ядра 235 U с образованием осколка 139 Xe и вылетом одного нейтрона.

Формирование запросного предписания осуществлено следующим образом:

  • «Ядро – мишень » – 235 U (выбраны значения Z = 92, A= 235);
  • «Налетающая частица » – налетающих частиц нет – спонтанное деление (в выпадающем меню выбрано «Нет налетающих частиц »);
  • «Выбираемый (пользователем) осколок » – ядро-осколок, например, 95 Sr (выбраны значения Z = 38, A = 95);
  • «Определяемый (программой) осколок » – ядро-осколок 140 Xe (Z = 92 – 38 = 54,
    A = 235 – 95 = 140);
  • «Мгновенная частица 1, сопровождающая деление » – нейтрон (выбраны значения Z = 0,
    A = 1, «Число частиц » – 1); при этом меняются показания определяемого программой осколка – 139 Xe (Z = 54, A = 140 – 1 = 149).

На Рис. 27 приведена выходная форма данного запроса: видно, что энергетический порог при делении ядра 235 Uотсутствует. Ядро 235 U имеет моду распада – “Эмиссия нейтрона”).

Делением ядер называется процесс, при котором из одного атомного ядра образуется 2 (иногда 3) ядра-осколка, которые являются близкими по массе.

Этот процесс является выгодным для всех β -стабильных ядер с массовым числом А > 100.

Деление ядер урана было выявлено в 1939 году Ганом и Штрасманом, однозначно доказавшие, что при бомбардировке нейтронами ядер урана U образуются радиоактивные ядра с массами и зарядами, приблизительно в 2 раза меньшими массы и заряда ядра урана. В том же году Л. Мейтнером и О. Фришером был введен термин «деление ядер » и было отмечено, что при этом процессе выделяется огром-ная энергия, а Ф. Жолио-Кюри и Э. Ферми одновременно выяснили, что при делении испускаются несколько нейтронов (нейтроны деления) . Это стало основой для выдвижения идеи самоподдерживающейся цепной реакции деления и использования деления ядер как источника энергии. Основой современной ядерной энергетики является деление ядер 235 U и 239 Pu под действием нейтронов.

Деление ядра может происходить благодаря тому, что масса покоя тяжелого ядра оказывается большей суммы масс покоя осколков, которые возникают в процессе деления.

Из графика видно, что этот процесс оказывается выгодным с энергетической точки зрения.

Механизм деления ядра можно объяснить на основе капельной модели, со-гласно которой сгусток нуклонов напоминает капельку заряженной жид-кости. Ядро удерживают от распада ядерные силы притяже-ния, большие, чем силы кулоновского отталкивания, которые действуют между протонами и стремящиеся разорвать ядро.

Ядро 235 U имеет форму шара. После поглощения нейтрона оно воз-буждается и деформируется, приобретая вытянутую форму (на рисунке б ), и растягивается до тех пор, пока силы отталкивания между половинка-ми вытянутого ядра не станут больше сил притяжения, действующих в перешейке (на рисунке в ). После этого ядро разрывается на две части (на рисунке г ). Осколки под действием кулоновских сил отталкивания раз-летаются со скоростью, равной 1/30 скорости света.

Испускание нейтронов в процессе деления , о котором мы говорили выше, объясняется тем, что относительное число нейтронов (по отношению к числу протонов) в ядре увеличивается с возрастанием атом-ного номера, и для образовавшихся при делении осколков число нейтронов становится большим, чем это возможно для ядер атомов с меньшими номерами.

Деление зачастую происходит на осколки неравной массы. Эти осколки являются радиоактивными. После серии β -распадов в итоге образуются стабильные ионы.

Кроме вынужденного , бывает и спонтанное деление ядер урана , которое было от-крыто в 1940 году советскими физиками Г. Н. Флеровым и К. А. Петржаком. Период полураспада для спонтанного деления соответствует 10 16 годам, что в 2 млн. раз больше периода полураспада при α -распаде урана.

Синтез ядер происходит в термоядерных реакциях. Термоядерные реакции — это реак-ции слияния легких ядер при очень высокой температуре. Энергия, которая выделяется при слиянии (синтезе), будет максимальной при синтезе легких элементов, которые обладают наименьшей энергией связи. При соединении двух легких ядер, например, дейтерия и трития, образуется более тяжелое ядро гелия с большей энергией связи:

При таком процессе ядерного синтеза происходит выделение значительной энергии (17,6 Мэв), равная разности энергий связи тяжелого ядра и двух легких ядер . Образующийся при реакциях нейтрон приобретает 70% этой энергии. Сравнение энергии, которая приходится на один нуклон в реакциях ядерного деления (0,9 Мэв) и синтеза (17,6 Мэв), показывает, что реакция синтеза легких ядер энергетически является более выгодной, чем реакция деления тяжелых.

Слияние ядер происходит под действием сил ядерного притяжения, поэтому они должны сблизиться до расстояний, меньших 10 -14 , на которых действуют ядерные силы. Этому сближению препятствует кулоновское отталкивание положительно заряженных ядер. Его можно пре-одолеть лишь за счет большой кинетической энергии ядер, которые превышают энергию их кулоновского отталкивания. Из соответствующих расчетов видно, что кинетическую энергию ядер, которая нужна для реакции синтеза, можно достигнуть при температурах порядка сотен миллионов градусов , поэтому эти реакции имеют название термоядерных .

Термоядерный синтез — реакция, в которой при высокой температуре, большей 10 7 К, из легких ядер синтезируются более тяжелые ядра.

Термоядерный синтез — источник энергии всех звезд, в том числе, и Солнца.

Основным процессом, при котором происходит освобождение термоядерной энергии в звездах, является превращение водорода в гелий. За счет дефекта массы в этой реакции масса Солнца уменьшается каждую секунду на 4 млн тонн .

Большую кинетическую энергию , которая нужна для термоядерного синтеза, ядра водорода получают в результате сильного гравитационного притяжения к центру звезды. После этого при слиянии ядер гелия образуются и более тяжелые элементы.

Термоядерные реакции играют одну из главных ролей в эволюции химического состава вещества во Вселенной. Все эти реакции происходят с выделением энергии, которая излучается звездами в виде света на протяжении миллиардов лет.

Осуществление управляемого термоядерного синтеза предоставило бы человечеству новый, практически неисчерпаемый источник энергии. И дейтерий, и тритий, нужные для его осуществления , вполне доступны. Первый содержится в воде морей и океанов (в количестве, достаточном для использования в течение миллиона лет), второй может быть получен в ядерном реакторе при облучении жидкого лития (запасы которого огромны) нейтронами:

Одним из важнейших преимуществ управляемого термоядерного синтеза является отсутствие радиоактивных отходов при его осуществлении (в отличие от реакций деления тяжелых ядер урана).

Главным препятствием на пути осуществления управляемого термоядерного синтеза является невозможность удержания высокотемпературной плазмы с помощью сильных магнитных полей в течение 0,1-1 . Однако существует уверенность в том, что рано или поздно термоядерные ре-акторы будут созданы.

Пока же получилось произвести только неуправляемую реакцию синтеза взрывного типа в водородной бомбе.

Освобождение энергии при делении ядер. Так же как и в других ядерных реакциях, энергия, освобождающаяся при делении, эквивалентна разности масс взаимодействующих частиц и конечных продуктов. Так как энергия связи нуклона в уране а энергия связи одного нуклона в осколках при делении урана должна выделяться энергия

Таким образом, при делении ядра освобождается огромная энергия, подавляющая ее часть выделяется в виде кинетической энергии осколков деления.

Распределение продуктов деления по массам. Ядро урана в большинстве случаев делится несимметрично. Два ядерных осколка имеют соответственно разные скорости и разные массы.

Осколки по массам распадаются на две группы; одна вблизи криптона с другая вблизи ксенона Массы осколков относятся друг к другу в среднем как Из за-конов сохранения энергии и импульса можно получить, что кинетические энергии осколков должны быть обратно пропорциональны их массам:

Кривая выхода продуктов деления симметрична относительно вертикальной прямой, проходящей через точку Значительная ширина максимумов свидетельствует о многообразии путей деления.

Рис. 82. Распределение продуктов деления урана по массам

Перечисленные характеристики относятся главным образом к делению под действием тепловых нейтронов; в случае деления под действием нейтронов с энергией в несколько и больше, ядро распадается на два более симметричных по массам осколка.

Свойства продуктов деления. При делении атома урана происходит срыв очень многих электронов оболочки, и осколки деления представляют собой приблизительно -кратно ионизованные положительные ионы, которые при прохождении через вещество сильно ионизуют атомы. Поэтому пробеги осколков в воздухе небольшие и близки к 2 см.

Легко установить, что образующиеся при делении осколки должны быть радиоактивными, склонными к испусканию нейтронов. Действительно, у стабильных ядер отношение числа нейтронов и протонов меняется в зависимости от А следующим образом:

(см. скан)

Ядра, которые образовались при делении, лежат в середине таблицы и, следовательно, содержат больше нейтронов, чем это допустимо для их стабильности. Освобождаться от лишних нейтронов они могут как путем -распада, так и непосредственно испуская нейтроны.

Запаздывающие нейтроны. В одном из возможных вариантов деления образуется радиоактивный бром. На рис. 83 показана схема его распада, в конце которой находятся стабильные изотопы

Интересна особенность этой цепочки: криптон может освобождаться от лишнего нейтрона либо за счет -распада, либо если он образовался в возбужденном состоянии за счет прямого испускания нейтрона. Эти нейтроны появляются через 56 сек после деления (время жизни относительно -перехода в возбужденное состояние хотя сам испускает нейтроны практически мгновенно.

Рис. 83. Схема распада радиоактивного брома, образованного в возбужденном состоянии при делении урана

Они называются запаздывающими нейтронами. Со временем интенсивность запаздывающих нейтронов спадает по экспоненте, как при обычном радиоактивном распаде.

Энергия этих нейтронов равна энергии возбуждения ядра. Хотя они составляют лишь 0,75% от всех нейтронов, вылетающих при делении, в осуществлении цепной реакции запаздывающие нейтроны играют важную роль.

Мгновенные нейтроны. Свыше 99% нейтронов освобождается в течение чрезвычайно короткого времени; их называют мгновенными нейтронами.

При изучении процесса деления возникает фундаментальный вопрос, сколько нейтронов получается в одном акте деления; этот вопрос важен потому, что если их число в среднем велико они могут быть использованы для деления последующих ядер, т. е. возникает возможность создания цепной реакции. Над разрешением этого вопроса в 1939-1940 гг. работали практически во всех крупнейших ядерных лабораториях мира.

1.8. Деление ядер

1.8.1. Реакции деления тяжелых ядер. Механизм деления ядра и энергия активации . Состав продуктов деления ядра и энергия деления. Элементарная теория деления

Деление ядер – ядерная реакция, при которой образуется два (реже три) ядра-осколка. Процесс сопровождается вылетом вторичных нейтронов, квантов и выделением значительного количества энергии.

Историческая справка. В 1938 г. в Ганн и Ф. Штрасман точным радиохимическим анализом показали, что при облучении урана нейтронами в нем образуется элемент барий, который находится в середине таблицы Менделеева. Реакция имела вид

, (Q≈ 200 МэB). (1.82)

Существует более 30 выходных каналов деления урана-235. Ф. Жолио-Кюри с сотрудниками во Франции и Э. Ферми с сотрудниками в Италии обнаружили испускание нескольких нейтронов в выходном канале. О. Фриш и Л. Мейтнер в Германии отметили громадную величину энергии, выделяющуюся при делении. Это послужило выдвижению идеи о самоподдерживающейся ядерной реакции деления. В 1940 г. и в России открыли спонтанное деление ядер. Основой современной ядерной энергетики служит деление ядер урана, и плутония под действием нейтронов. Ядерная эра началась с 1938 г.

Деление ядер может происходить также под действием протонов, γ-квантов, α-частиц и др. Вынужденное деление возбужденного ядра нейтроном (n , f ) конкурирует с другими процессами: с радиационным захватом нейтрона (n , γ ), т. е испусканием γ-кванта и рассеянием нейтрона на ядре (n , n ).

Вероятность деления ядра определяется отношением сечения деления σ f ядра к полному сечению захвата нейтрона.

Изотопы , , делятся нейтронами всех энергий, начиная с нуля. В ходе сечений деления этих изотопов появляются резонансы, соответствующие уровням энергии делящегося ядра (см. рис. 1.13).

Механизм деления ядра и энергия активации

Процесс деления ядра объясняется как деление однородной заряженной жидкой капли под действием кулоновских сил (М, Уиллер, 1939). Чтобы разделиться, ядро должно приобрести определенную критическую энергию, называемую энергией активации. После захвата нейтрона образуется составное возбужденное ядро. Возбужденное ядро начинает колебаться. Объем ядра не меняется (ядерная материя практически несжимаема), но поверхность ядра увеличивается. Поверхностная энергия возрастает, следовательно, силы поверхностного натяжения стремятся вернуть ядро в исходное состояние. Кулоновская энергия уменьшается по абсолютной величине за счет увеличения среднего расстояния между протонами. Кулоновские силы стремятся разорвать ядро. Ядро из сферической формы переходит в эллипсоидальную, затем происходит квадрупольная деформация ядра, образуется перетяжка, ядро превращается в гантель, которая рвется, образуя два осколка, и «брызги» – пару нейтронов.

Характеристикой способности ядра к делению является отношение кулоновской энергии к поверхностной энергии, взятых из полуэмпирической формулы для энергии связи ядра

, (1.83)

где – параметр делимости .

Ядра с параметром делимости >17 могут делиться, с критическим параметром делимости ()кр = 45 сразу делятся (условие спонтанного деления ядер). Чтобы ядро могло разделиться, оно должно преодолеть энергетический барьер, называемый барьером деления. Эту энергию в случае вынужденного деления ядро получает при захвате нейтрона.

Состав продуктов деления

Осколки деления . Основным типом деления ядра является деление на два осколка. Осколки делятся по массе ассиметрично в соотношении два к трем. Выход продуктов деления определяется как отношение числа делений, дающих осколок с данным А к полному числу делений. Поскольку в каждом акте деления получается два ядра, полный выход на одно деление для всех массовых чисел составляет 200%. Распределение масс осколков при делении ядра показано на рис. 1.14. На рисунке изображена типичная двугорбая кривая распределения полного выхода деления тепловыми нейтронами. Импульсы осколков равны и противоположны по знаку. Скорости осколков достигают ~107 м/с.

Рис.1.14. Зависимость выходов продуктов деления урана-235 и плутония-239 под действием тепловых нейтронов от массового числа А.

Нейтроны деления . В момент образования осколки первоначального ядра сильно деформированы. Избыток потенциальной энергии деформации переходит в энергию возбуждения осколков. Осколки деления имеют большой заряд и переобогащены нейтронами, как исходное ядро. Они переходят в стабильные ядра, выбрасывая вторичные нейтроны и γ-кванты. Возбуждение ядер осколков снимается «испарением» нейтронов.

Мгновенными нейтронами деления называются нейтроны, испускаемые возбужденными осколками за время, меньшее 4 10-14 сек. Они испаряются из осколков изотропно.

В лабораторной системе координат (л. с.к.) энергетический спектр нейтронов деления хорошо описывается максвелловским распределением

, (1.84)

где Е – энергия нейтрона в л. с.к..gif" width="63 height=46" height="46"> – средняя энергия спектра.

Число v вторичных нейтронов на 1 акт деления тепловыми нейтронами составляет для урана-235 v = 2,43 , плутония-239 v = 2,89. (например, одновременно на 100 актов деления образуется 289 вторичных нейтронов).

Излучение γ-квантов . После «испарения» нейтронов из осколков у них остается энергия возбуждения, которая уносится мгновенными γ-квантами. Процесс излучения γ-квантов происходит за время ~ 10-14 с вслед за испусканием нейтронов. Полная эффективная энергия излучения на 1 деление Е полн = 7,5 МэВ..gif" width="67" height="28 src="> МэВ. Среднее число γ-квантов на 1 деление .

Запаздывающие нейтроны – нейтроны, появляющиеся после деления исходных ядер (от 10-2 сек до 102 сек). Количество запаздывающих нейтронов < 1% от полного количества нейтронов деления. Механизм испускания связан с β -распадом осколков деления вида , , у которых энергия β -распада больше энергии связи нейтрона. В этом случае существует запрет β -перехода в основное состояние и малая энергия отделения нейтрона. Энергия возбуждения ядра больше энергии связи нейтрона. Нейтрон вылетает мгновенно после образования возбужденного ядра из ядра-осколка в результате его β -распада. Однако по времени это происходит только после периода полураспада ядра-осколка.

Распределение энергии на 1 акт деления тяжелого ядра тепловыми нейтронами показано в табл. 1.4.

Энергия продуктов деления ядра Таблица 1.4

Кинетическая энергия легкого осколка Т оск л, МэB

Кинетическая энергия тяжелого осколка Т оск т МэB

Кинетическая энергия нейтронов деления Е n МэB

Энергия мгновенных γ-квантов Еγ м МэB

Энергия β -частиц продуктов деления Еβ МэB

Энергия γ-излучения продуктов деления Еγ пр МэB

Энергия антинейтрино продуктов деления Е v МэB

Энергия γ-излучения вследствии захвата нейтрона Еγ n МэB

Суммарная энергия выделяемая при делении ядра Q Σ МэB

Тепловая энергия деления

QT = Т оск л + Т оск т + Е n + Еγ м+ Еβ + Еγ пр + Еγ = 204 МэB.

Уносимая антинейтрино энергия не выделяется в виде тепловой энергии, поэтому на 1 акт деления ядра тепловым нейтроном приходится ~ 200 МэB. При тепловой мощности в 1 Вт происходит 3,1.1010 делений/сек. В химических реакциях на один атом приходится энергия ~ 1 эB.

Элементарная теория деления

Предположим, что в процессе деления https://pandia.ru/text/78/550/images/image028_18.gif" width="31" height="27 src="> сохраняется массовое число А и заряд Z . Это значит, что мы учитываем только осколки:

A 1+ A 2 = A , Z 1+ Z 2 = Z ,

ядро делится в соотношении 2 к 3:

A 1 / A 2 = Z 1 / Z 2=2/3.

Энергия реакции равна энергии осколков Q = T ock

Q = c 2 [M – (M 1 + M 2 ) ],

Q = Е св1 + Е св2 Е св , (1.85)

где E св – полная энергия связи ядра относительно всех составляющих его нуклонов

, (1.86)

аналогично Е св1 , Е св2 – энергии связи первого и второго осколков.

Подставляя (1.86) и обе формулы для Е св1, Е св2 в (1.85) и пренебрегая последним слагаемым, получаем

. (1.87)

Полагая согласно (1.15) = 17,23 МэB, https://pandia.ru/text/78/550/images/image026_22.gif" width="31" height="20"> получаем кинетическую энергию осколков Tock ≈178 МэB, что превышает всего на 10 МэB табличное значение.

1.8.2. Цепные реакции деления ядер урана. Формула для размножения в цепной реакции. Коэффициенты размножения. Формула четырех сомножителей

Ядерные цепные реакции деления тяжелых ядер нейтронами – это ядерные реакции, в которых число нейтронов возрастает и возникает самоподдерживающийся процесс деления ядер вещества. Химические и ядерные разветвленные цепные реакции всегда экзотермические. Цепная реакция деления осуществима практически на трех изотопах и возможна только потому, что при делении ядра первичным нейтроном вылетает больше двух вторичных нейтронов в выходном канале.

Коэффициент размножения К – основная характеристика развития ядерной цепной реакции.

где Ni – число нейтронов, возникших в i -поколение, Ni –1 – число нейтронов, возникших в (i –1)-поколение.

Теория цепных ядерных реакций была создана и в 1939 г. по аналогии с теорией химических цепных реакций (1934). Самоподдерживающаяся ядерная цепная реакция возможна, когда K >1 – реакция надкритическая, K =1 – реакция критическая. Если K <1 – реакция подкритическая, она затухает.

Формула для размножения нейтронов в цепной реакции

Если в начале реакции имеется n нейтронов, тогда за одно поколение их число станет

Т. е..gif" width="108" height="48">,

где τ – среднее время жизни одного поколения нейтронов

Если разделим переменные и проинтегрируем, то получим

,

используя формулу , получаем окончательно, что число нейтронов возрастает со временем t по экспоненте с положительным показателем

https://pandia.ru/text/78/550/images/image027_18.gif" width="37" height="23"> медленными нейтронами и с делением ядер быстрыми нейтронами.

Коэффициенты размножения. Формула четырех сомножителей

Пусть система уран + замедлитель имеет бесконечные размеры. Предположим, что, в момент рождения поколения нейтронов поглощается n тепловых нейтронов, каждый из которых образует https://pandia.ru/text/78/550/images/image058_8.gif" width="126" height="37">, (1.91)

где σU – сечение поглощения ураном замедленных тепловых нейтронов,

σ3 – сечение поглощения замедлителем замедленных тепловых нейтронов,

ρU-концентрация ядер урана, ρ3 – концентрация ядер замедлителя.

Таким образом, число тепловых нейтронов, захваченных ядерным горючим, составляет (n ηεр f ). Коэффициент размножения нейтронов в бесконечной среде (формула четырех сомножителей)

. (1.92)

Коэффициент размножения нейтронов в конечной среде

Кэф =, (1.93)

где – полная вероятность того, что нейтрон избежит утечки из активной зоны .

Чтобы в конечной системе происходила стационарная ядерная цепная реакция, достаточно Кэф =1. Этому соответствует критический (наименьший для протекания реакции) размер активной зоны. (Для чистого урана это шар радиусом 8,5 см и массой 47 кг)..gif" width="25 height=23" height="23">>1.

Впервые управляемая ядерная цепная реакция была осуществлена Э. Ферми в Чикаго в 1942г. Ядерный реактор имел η = 1,35, ε ≈ 1,03, ε pf ≈ 0,8, = 1,08, для К эф необходимо θ0,93, что соответствует размеру 5÷10 м. Ядерный реактор, построенный в Москве в 1946 г., имел аналогичные параметры.