Траектория. Перемещением наз-ся вектор, соединяющий начальную и конечную точки траектории Кинематическое описание движения мат. Точки

Кинематическое описание движения мат. Точки

(Мат. точка, система отсчета, перемещение, траектория, путь, скорость, ускорение.)

Кинематические уравнения равнопеременного движения

Кинематика занимается описанием движения, отвлекаясь от его причин. Для описания движения можно выбирать различные системы отсчета. В различных системах отсчета движение одного и того же тела выглядит по-разному. В кинематике при выборе системы отсчета руководствуются лишь соображениями целесообразности, определяющимися конкретными условиями. Так, при рассмотрении движения тел на Земле естественно связать систему отсчета с Землей, что мы и будем делать. При рассмотрении движения самой Земли систему отсчета удобнее связывать с Солнцем и т. п. Никаких принципиальных преимуществ одной системы отсчета по сравнению с другой в кинематике указать нельзя. Все системы отсчета кинематически эквивалентны. Только в динамике, изучающей движение в связи с силами, действующими на движущиеся тела, выявляются принципиальные преимущества определенной системы отсчета или, точнее, определенного класса систем отсчета. Так,

Материальной точкой наз-ся макроскопическое тело, размеры которого настолько малы, что в рассматриваемом движении их можно не принимать во внимание и считать, что все вещество тела как бы сосредоточено в одной геометрической точке.

Материальных точек в природе не существует. Материальная точка есть абстракция, идеализированный образ реально существующих тел. Можно или нельзя то или иное тело при изучении какого либо движения принять за материальную точку - это зависит не столько от самого тела, сколько от характера движения, а также от содержания вопросов, на которые мы хотим получить ответ. Абсолютные размеры тела при этом не играют роли. Важны относительные размеры, т. е. отношения размеров тела к некоторым расстояниям, характерным для рассматриваемого движения. Например, Землю при рассмотрении ее орбитального движения вокруг Солнца с громадной точностью можно принять за материальную точку. Характерной длиной здесь является радиус земной орбиты R ~ 1,5 Ю8 км. Он очень велик по сравнению с радиусом земного шара г жл:6,4 103 км. Благодаря этому при орбитальном движении все точки Земли движутся практически одинаково. Поэтому достаточно рассмотреть движение только одной точки, например центра Земли, и считать, что все вещество Земли как бы сосредоточено в этой геометрической точке. Такая идеализация сильно упрощает задачу об орбитальном движении Земли, сохраняя, однако, все существенные черты этого движения. Но эта идеализация не годится при рассмотрении вращения Земли вокруг собственной оси, ибо бессмысленно говорить о вращении

геометрической точки вокруг оси, проходящей через эту точку.

Телом отсчета наз-ся положение материальной точки в пространстве в данный момент времени определяется по отношению к какому-либо другому телу . С ним связывается

Система отсчета – совокупность системы координат и часов, связанных с телом, по отношению к которому изучается движение каких-нибудь других материальных точек.

Перемещением наз-ся вектор, соединяющий начальную и конечную точки траектории.

Траекторией движения материальной точки называется линия, описываемая этой точкой в пространстве. В зависимости от формы траектории движение может быть прямолинейным и криволинейным.







Проекцию считают положительной если (а х >0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х
Путь или перемещение мы оплачиваем при поездке в такси? Мяч упал с высоты 3 м, отскочил от пола и был пойман на высоте 1 м. Найти путь и перемещение мяча. Велосипедист движется по окружности с радиусом 30 м. Чему равны путь и перемещение велосипедиста за половину оборота? За полный оборот?


§ § 2,3 ответить на вопросы в конце параграфа. Упр. 3, стр.15 На рис. показана траектория АВСД движения точки из А в Д. Найти координаты точек начала и конца движения, пройденный путь, перемещение, проекцию перемещения на оси координат. Решить задачу (по желанию):Катер прошел на северо-восток 2 км, а затем в северном направлении еще 1 км. Найти геометрическим построением перемещение (S) и его модуль (S).

Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной . Векторная сумма всех сил, действующих на тело, называетсяравнодействующей силой .

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F 0 , с которой эта пружина при фиксированном растяжении действует на прикрепленное к ее концу тело, называют эталоном силы . Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы и эталонной силы остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю F = F 0 (рис. 1.7.3).

Если измеряемая сила F больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно (рис. 1.7.4). В этом случае измеряемая сила равна 2F 0 . Аналогично могут быть измерены силы 3F 0 , 4F 0 и т. д.

Измерение сил, меньших 2F 0 , может быть выполнено по схеме, показанной на рис. 1.7.5.

Эталонная сила в Международной системе единиц называется ньютон (Н).

Сила в 1 Н сообщает телу массой 1 кг ускорение 1 м/с 2

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами . Сила измеряется по растяжению динамометра (рис. 1.7.6).

Законы механики Ньютона - три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687). Первый закон: “Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”. Второй закон: “Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует”. Третий закон: “Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны”. 1.1. Зако́н ине́рции (Первый закон Нью́тона) : свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia - “бездеятельность”, “косность”), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы. Системы отсчёта, в которых выполняется закон инерции, называются инерциальными системами отсчёта (ИСО). Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы. Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов. Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково. В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно - “покоящейся”) все процессы протекают точно так же, как и в покоящейся системе. Следует отметить что понятие инерциальной системы отсчета - абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным. 1.2 Закон движения - математическая формулировка того, как движется тело или как происходит движение более общего вида. В классической механике материальной точки закон движения представляет собой три зависимости трёх пространственных координат от времени, либо зависимость одной векторной величины (радиус-вектора) от времени, вида. Закон движения может быть найден, в зависимости от задачи, либо из дифференциальных законов механики, либо из интегральных. Закон сохранения энергии - основной закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). В термодинамике закон сохранения энергии называется первым началом термодинамики и говорит о сохранении энергии в сумме с тепловой энергией. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии. Частный случай - Закон сохранения механической энергии - механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть. Ек1+Еп1=Ек2+Еп2 Закон сохранения энергии - это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт. Согласно теореме Нётер, закон сохранения механической энергии является следствием однородности времени. 1.3. Зако́н сохране́ния и́мпульса (Зако́н сохране́ния коли́чества движения 2й закон Ньютона) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика). Как и любой из законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе - на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются. Сам закон: Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению: . 1.4. Силы инерции Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную “силу инерции”, и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнём: “сила инерции” - это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета. 1.5. Закон вязкости Закон вязкости (внутреннего трения) Ньютона - математическое выражение, связывающее напряжение внутреннего трения τ (вязкость) и изменение скорости среды v в пространстве (скорость деформации) для текучих тел (жидкостей и газов): где величина η называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости (единица СГС - пуаз). Кинематическим коэффициентом вязкости называется величина μ = η / ρ (единица СГС - Стокс, ρ − плотность среды). Закон Ньютона может быть получен аналитически приемами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответсвующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле где < u > - средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

Механическое движение. Относительность движения. Элементы кинематики. материальной точки. Преобразования Галилея. Классический закон сложения скоростей

Механика -раздел физики, изучающий законы движения и взаимодействия тел.Кинематика - раздел механики, не изучающий причины движения тел.

Механическое движение – изменение положение тела в пространстве относительно других тел с течением времени.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.

Поступательным называется движение, при котором все точки тела движутся одинаково. Поступательным называется движение, при котором любая прямая, проведенная через тело, остаётся параллельной сама себе.

Кинематические характеристики движения

Траектория линия движения. S - путь длина траектории .


S – перемещение – вектор, соединяющий начальное и конечное положение тела.

Относительность движения. Система отсчёта - совокупность тела отсчёта, системы координат и прибора для измерения времени (часов)

система координат

Прямолинейным равномерным движением называют такое движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Скорость - физическая величина, равная отношению вектора перемещения к промежутку времени, в течение которого это перемещение произошло. Скорость равномерного прямолинейного движения численно равна перемещению за единицу времени.


Определение 1

Траектория движения тела – это линия, которая была описана материальной точкой при перемещении из одной точки в другую с течением времени.

Существуют несколько видов движений и траекторий твердого тела:

  • поступательное;
  • вращательное, то есть движение по окружности;
  • плоское, то есть перемещение по плоскости;
  • сферическое, характеризующее движение по поверхности сферы;
  • свободное, иначе говоря, произвольное.

Рисунок 1 . Определение точки при помощи координат x = x (t) , y = y (t) , z = z (t) и радиус-вектора r → (t) , r 0 → является радиус-вектором точки в начальный момент времени

Положение материальной точки в пространстве в любой момент времени может быть задано при помощи закона движения, определенный координатным способом, через зависимость координат от времени x = x (t) , y = y (t) , z = z (t) или от времени радиус-вектора r → = r → (t) , проведенного из начала координат к заданной точке. Это показано на рисунке 1 .

Определение 2

S → = ∆ r 12 → = r 2 → - r 1 → – направленный отрезок прямой, соединяющий начальную с конечной точкой траектории тела. Значение пройденного пути l равняется длине траектории, пройденной телом за определенный промежуток времени t .

Рисунок 2 . Пройденный путь l и вектор перемещения s → при криволинейном движении тела, a и b – начальная и конечная точки пути, принятые в физике

Определение 3

По рисунку 2 видно, что при движении тела по криволинейной траектории модуль вектора перемещения всегда меньше пройденного пути.

Путь – скалярная величина. Считается числом.

Сумма двух последовательных перемещений из точки 1 в точку 2 и из токи 2 в точку 3 является перемещением из точки 1 в точку 3 , как показано на рисунке 3 .

Рисунок 3 . Сумма двух последовательных перемещений ∆ r → 13 = ∆ r → 12 + ∆ r → 23 = r → 2 - r → 1 + r → 3 - r → 2 = r → 3 - r → 1

Когда радиус-вектор материальной точки в определенный момент времени t является r → (t) , в момент t + ∆ t есть r → (t + ∆ t) , тогда ее перемещение ∆ r → за время ∆ t равняется ∆ r → = r → (t + ∆ t) - r → (t) .

Перемещение ∆ r → считается функцией времени t: ∆ r → = ∆ r → (t) .

Пример 1

По условию дан движущийся самолет, представленный на рисунке 4 . Определить вид траектории точки М.

Рисунок 4

Решение

Необходимо рассмотреть систему отсчета I , называемую «Самолет» с траекторией движения точки М виде окружности.

Будет задана система отсчета II «Земля» с траекторией движения имеющейся точки М по спирали.

Пример 2

Дана материальная точка, которая совершает движение из А в В. Значение радиуса окружности R = 1 м. Произвести нахождение S , ∆ r → .

Решение

Во время движения из А в В точка проходит путь, который равен половине окружности, записываемой формулой:

Подставляем числовые значения и получаем:

S = 3 , 14 · 1 м = 3 , 14 м.

Перемещением ∆ r → в физике считается вектор, соединяющий начальное положение материальной точки с конечным, то есть А с В.

Подставив числовые значения, вычислим:

∆ r → = 2 R = 2 · 1 = 2 м.

Ответ: S = 3 , 14 м; ∆ r → = 2 м.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter