Крепление солнечных панелей на крыше. Гибкие солнечные панели, их особенности и устройство Какая подложка у гибких солнечных панелей

Приняв решение направиться в дальнюю поездку, начинается ответственный сбор в дорогу, мы загружаем в багаж большое количество как необходимых, так и не очень нужных электрических приборов. Ну, на самом деле, нельзя же в интересном и познавательном походе обойтись без мобильного телефона или не взять с собой фотоаппарат, что бы сделать интересные снимки? Для кого-то, важным моментом будет наличие при себе ноутбука, навигатора, либо планшета.


Конечно же, не менее пятидесяти процентов из указанной электроники, Вам в поездке в основном вряд ли пригодятся, они не являются жизненно необходимыми вдалеке от Вашего дома. Недостаток всех электрических приборов, в необходимости их систематической зарядки. У моря, на пересеченной местности, в горах, лесу, маловероятно, что Вы отыщите розетку для подключения зарядного устройства. Вот в этих ситуациях, любителей дальних поездок, отдыха и развлечений на природе, выручат гибкие солнечные батареи, отметим, что не обычные, а именно гибкие, ведь этот тип батарей намного более удобен для транспортировки.


Преимущества и отличия, которые имеют гибкие солнечные батареи в сравнении с другими мобильными источниками электрической энергии, сложно переоценить.

  • Первое, очень важное преимущество гибкой солнечной батареи, это очень удобная транспортировка и переноска к месту назначения, самому, в рюкзаке.
  • Второе преимущество — это ни чем не ограниченный период работы солнечной батареи, их заряд не заканчивается. Самое основное, что необходимо, это сделать установку так, что бы имелся постоянный источник солнечных лучей.
  • Третье важное преимущество — это, конечно же вес гибкой батареи, весят они гораздо меньше любого аккумулирующего электроэнергию устройства.

По окончании эксплуатации, этот вид источника электрической энергии достаточно просто свернуть в трубку, либо сложить как картонную коробку и поместить в сумку или рюкзак.

Технологический процесс изготовления

В процессе развития производства гибких световых батарей, изготовители пришли к применению метода ламинирования. Применение этого способа, позволило сделать технологии изготовления достаточно простыми. В результате, была достигнута довольно надежная прочность контакта между основными элементами солнечной батареи.


Непосредственно заводской процесс производства делиться на четыре этапа:

  • Внешние прозрачные пленки, покрывают тончайшим слоем проводника, в качестве его могут выступать как индий, так и оксид олова;
  • Далее, на одну из нескольких пленок наносят карбонат цезия;
  • Следующим этапом, идет слой клеевого состава, имеющий проводящие характеристики;
  • И, в заключение, осуществляют склеивание или ламинирование полученных частей, сделать это можно только воздействием температуры и высокого давления;

К сегодняшнему дню, процессы разработок в возобновляемой энергетике, движутся в сторону повышения коэффициента полезного действия солнечных батарей. Достигают этого эффекта при помощи использования в изготовлении элементов новейших материалов. На современном этапе развития производства солнечных элементов, основные надежды возлагаются на материал под названием графен. Батареи, изготовленные с применением графена, выдают очень хорошие результаты КПД.


Углеродный наноматериал Графен, который применяется в изготовлении гибких солнечных батарей

Стандартные электрические батареи на солнечной энергии, имеют большую производительность в сравнении с гибкими, это результат использования в процессе производства кристаллического кремния.

В связи с этим, гибкие солнечные модули, имеют предпочтение в выборе, именно потому, что их преимущества гибкость и показатели веса. В результате они очень удобны в транспортировке и переноске на большие расстояние. Их удобно использовать в дикой местности.

Как подобрать модуль нужной мощности?

Подходить к выбору необходимого именно в Вашем случае устройства, надо с предварительного расчета выходной мощности, которую желаете получить. Для начала, надо сделать расчет мощности для подзарядки электронных устройств, собираемых с собой в поход. Когда соберете все необходимые в поездке электрические устройства, возьмите на вооружение инструкции по эксплуатации, по ним высчитайте общую потребность в электричестве, собранного оборудования. Обязательно учтите капризность погодных условий, погода может быть облачной, лишая вашу солнечную установку прямых лучей. По этому, лучше выбрать световой элемент с некоторым превышением необходимой мощности.


По уже имеющемуся многочисленному опыту применения гибких солнечных батарей, приборы производства Российской Федерации, по своим характеристикам, как правило, значительно эффективней и лучше зарубежных производителей. Продукция отечественного производства превосходит их в нескольких параметрах.

Первое — это, конечно же, более высокие выходные электрические показатели мощности при одинаково заявленных производителями параметров в инструкциях по эксплуатации. Это не является следствием попыток производителей ввести в заблуждение покупателей своей продукции, путем завышения номинальной мощности, предлагаемого для туризма устройства. Вероятнее всего, в ходе испытаний солнечных источников, применялись параметры наиболее эффективные в Американских пустынях и каньонах. Погодные условия, там отличны от наших, облачных дней там намного меньше, нежели у нас, и солнце на много дольше находится в зените, выдавая максимальную мощность на испытываемое устройство.

Второе существенная разница, в том, что иностранные производители выпускают устройства с большими габаритными параметрами, в условиях туризма это может быть не совсем удобно. Отечественная батарея более компактная. В дополнение, такие солнечные батареи должны транспортироваться в специальном контейнере, а такой футляр займет много, постоянно не хватающего полезного места в Вашем рюкзаке или сумке.


В каком направлении движется развитие отрасли

Прекрасные и многообещающие перспективы развития, имеют солнечные батареи. Эти перспективы не будут ограничены зарядкой электронных устройств или электровелосипеда, они касаются и других сфер человеческой жизни. С течением дней, производство солнечных систем эволюционирует все дальше, устройства становятся все легче, тоньше и совершенней. Последние разработки, стали еще и много прозрачней. Дальнейшие перспективы этих устройств, просто умопомрачительны. Уже созданы солнечные батареи, характеристики которых позволяют использовать их в качестве тонировки для стекла. Здесь очевидна перспектива применения с параллельным сохранением свободного места для размещения батарей. Уже перестает быть единственным удобным местом установки батарей в городских условиях крыша строения или дома. Располагая такой источник получения электроэнергии из солнечных лучей на стеклах автомобильного транспорта, можно без проблем получать неограниченный, возобновляемый электрический заряд для аккумулятора машины, при этом не будет теряться так необходимое пространство. Использование этого оборудования, будет незаметным для непосвящённого человека.


Заграничные исследователи в области возобновляемых источников энергии, предложили довольно хорошее решение. Сейчас стало возможным использование гибких батарей в текстильном производстве. Тканевые покрытия, используемые в повседневной жизни человека, могут дополнительно повышать количество вырабатываемого электричества, как пример, при использовании совместно со шторами, будут препятствовать попаданию в помещение ультрафиолетовых солнечных лучей.

Именно в связи со своей гибкостью, новые солнечные батареи можно использовать во внешней отделке фасадов домов. Если прибегнуть к технологиям, позволяющим использовать практически всю внешнюю поверхность строения: окна, двери, стены, крышу, в результате выработка возобновляемой электроэнергии будет огромна. При использовании такой технологии, все запросы в электричестве, при эксплуатации сооружения, будут удовлетворены более чем на сто процентов.


Люди давно задумываются об экологически чистых и дешевых энергетических ресурсах. Поэтому альтернативой энергетики, основанной на применении углеводородов, становятся ветряки и солнечные батареи. Тяжеловесные конструкции со временем трансформировались в изящные панели. Их используют в быту, автомобилестроении, освоении космоса.

Устройство и работа модулей

Гибкая солнечная панель устроена следующим образом: тонкая подложка покрыта кремниевым полупроводником. Толщина панели с напылением составляет не более 1 мкм. Полупроводник нагревается солнцем, в результате чего электроны перемещаются в заданном направлении. К элементам монтируют выводы и формируют батарею. Для работы такой мобильной электростанции используют солнечную энергию.

Крупногабаритные, с маленьким КПД, солнечные батареи ушли в прошлое. Современным моделям не требуется максимальное количество солнечного света, а сами конструкции стали легкими, гибкими, мобильными, их можно свернуть в трубку и взять с собой в поход.

В настоящее время аморфный кремний заменяют сульфиды и теллуриды кадмия, медно-галлиевые и индиевые диселениды, полимерные соединения.

Для повышения КПД современные технологии позволяют выпускать многослойные полупроводниковые конструкции. Каскадное строение панели дает возможность преобразовывать отраженный свет несколько раз, что доводит их работоспособность почти до кристаллических вариантов.

Несмотря на то что устройство выглядит довольно просто, для подачи тока в сеть необходимы дополнительные составляющие:

  • Аккумулятор, накапливающей энергию. Он нужен при перепадах напряжения.
  • Инвертор, переводящий постоянный ток в переменный.
  • Система для корректировки заряда аккумулятора.

Отличительные характеристики

Гибкие гелиомодули имеют свои особенности:

  • Тонкая податливая структура батарей дает возможность использовать их на нестандартных типах поверхности.
  • Имеют высокий уровень оптического поглощения фотонов, это увеличивают их КПД.
  • Гибкие батареи способны работать даже в облачную погоду, что говорит о высокой производительной выработке.
  • Наиболее актуален такой вид энергии в жарком климате, там, где гелиомодули получают максимальное количество солнечных лучей.
  • Особо высокую продуктивность солнечные панели показывают на крупных гелиокомплексах.

Преимущества и недостатки

Гибкая солнечная панель, благодаря своей мобильности, имеет преимущества над другими видами батарей.

К ее достоинствам относится:

  • Надежность изделия обеспечена мерами, предохраняющими от механического разрушения, воздействия влаги. Легкий вес и большая площадь позволяет панели оставаться невредимой при падении с многометровой высоты. Большинство конструкций оснащены чехлами.
  • Ультратонкая панель имеет небольшую массу, 6-ваттная батарея весит менее 300 грамм, тогда как кристаллическая таких же параметров – на 100 г больше.
  • Эффективность работы пленочных моделей составляет 15%, кристаллических – 20%. Но в пересчете КПД на массу тела, солнечная панель имеет преимущества.

К недостаткам можно отнести цену, которая превышает стоимость жесткой батареи. Пока еще не слишком большой спрос удерживает ценовую политику. Постепенно ситуация в этом отношении будет улучшаться.

Применение

Устройства, преобразующие свет в электрический ток, давно нашли свое применение. Гибкие солнечные панели облегчают жизнь людей во многих сферах деятельности, от бытового уровня до космических разработок.

При архитектурной отделке домов гибкие панели монтируют на крышах и в окнах зданий. Стекло «триплекс» с функционалом солнечной генерации собирает энергию света, не нарушая прозрачность окон и создает приятный микроклимат в помещении. В комнатах, где установлены окна с триплексом, можно обходиться без кондиционера.

Подобные стекла устанавливают в учебных заведениях, торговых павильонах, на остановках общественного транспорта, его используют для уличных бассейнов и в теплицах.

Небольшой вес панелей делает их востребованными в самолетостроении, ими оснащают электрические автомобили, лодки, аэростаты. Нашли свое применение гибкие конструкции в военном деле, судостроении, кинематографе, их применяют работники полиции и МЧС.

Панели монтируются на любой поверхности, поэтому их с успехом используют в быту.

Пленочную батарею можно встретить на часах, калькуляторах, в качестве нашивок на одежде, на чехлах. Некоторые модули созданы для ношения на сумках и рюкзаках. Power bank с солнечными фотоэлементами позволяет в экспедициях и походах заряжать телефоны, планшеты, фонарики, фотоаппараты.

Фотопанели на основе аморфного кремния нашли свое применение на космических станциях, с учетом малого веса, их легко доставить на околоземную орбиту, а энергоемкость подобных конструкций в пять раз превышает кристаллические варианты. Удобно использовать солнечные панели на объемных гелиостанциях, где достаточно места для их размещения.

Выбор

Одним из важных критериев выбора являются климатические условия местности, в которой будут установлены гелиопанели. Учитывается количество солнечных дней в году и длина самого дня. Исходя из этих данных, определяется мощность электроэнергии, которую должна вырабатывать батарея в час или сутки. Для северных районов подойдет текстурированное стекло, оно эффективно справляется с работой даже в пасмурные дни. Модули из микроморфного кремния не требуют точной ориентации на солнце, их суммарная годовая мощность превосходит другие тонкопленочные батареи. На них часто останавливают свой выбор жители районов с малой освещенностью.

Выбирая модуль для дома, необходимо продумать, какие электроприборы будут востребованы, хватит ли для них мощности предполагаемой покупки.

Нужно заранее определиться с местом для солнечных панелей и предусмотреть резервную территорию, если понадобится нарастить мощность.

При покупке учитывается тип конструкции, материал, толщина фотоэлемента, производитель модуля – все это влияет на цену, качество и длительность работы. Не обязательно переплачивать за иностранные бренды, хорошо себя зарекомендовали модули российского производства, ориентированные на наши климатические условия.

Для расчета количества модулей, следует учитывать, что семья из 4 человек, в среднем, потребляет 200–300 кВт электроэнергии в месяц. Солнечные панели вырабатывают с одного квадратного метра примерно от 25 Вт до 100 Вт в сутки. Для полного удовлетворения дома в потребностях электричества, понадобится 30–40 секций. Оснащение солнечными батареями обойдется семье около 10 тысяч долларов. Устанавливать панели следует на южную сторону крыши, куда попадает максимальное количество солнечных лучей.

Чтобы определиться с выбором, следует понять, какой тип модуля больше подходит покупателю:

  • Монокристаллические фотоэлементы стоят 1,5 доллара за Вт. Они имеют меньшие размеры и более эффективны, чем другие виды подобных батарей. Их общее покрытие занимает меньше места. Учитывая мощность и качество, лучше сделать выбор в их пользу. Единственным минусом является высокая стоимость.
  • Поликристаллические батареи стоят 1,3 доллар за Вт. По мощности они уступают монокристаллическим, но и оцениваются дешевле. Бюджетные возможности привлекают покупателей, к тому же последние разработки подобных батарей сильно приблизили их КПД к монокристаллическим аналогам.

  • Солнечные тонкопленочные панели имеют меньше мощности на один квадратный метр, чем предыдущие модели. Ситуацию выравнивает появление на рынке модулей из микроморфного кремния. Они вырабатывают хорошую суммарную мощность за годовой отрезок времени, отлично себя зарекомендовали в работе видимого и инфракрасного спектра. Для них не важна привязанность к солнечным лучам. Срок эксплуатации батарей составляет 25 лет. Модули имеют недорогую технологию производства, это сказалось на их стоимости – 1,2 доллара за Вт.
  • Большой интерес представляет собой гибридная панель, так как она генерирует тепловую и электрическую энергию. Конструкция соединяет в себе коллектор тепла и элементы фотоэлектрической батареи.

Еще совсем недавно считалось, что гибкие солнечные батареи из-за своего малого веса и неприхотливости могут быть полезными только любителям путешествий. Их низкая эффективность (не более 10% - 12%) вполне могла устраивать путешественников, которые использовали эти батареи в качестве зарядников для своих гаджетов. А тех, кто хотел бы установить в своем доме солнечную электростанцию, такой низкий КПД также никак не мог удовлетворить. И хотя бурное развитие нанотехнологий, поиски и создание более эффективных полупроводниковых материалов позволили получить высокоэффективные мягкие солнечные батареи, говорить о том, что они начали вытеснять ставшие уже привычными кремниевые панели, пока рано.

Гибкие солнечные батареи от компании Power Film

Основанная в 1988 году американская компания Power Film Inc. специализируется на разработке и производстве тонкопленочных гибких гелиевых батарей и зарядных устройств на их основе. Выдержав жестокую конкуренцию, компания стала победителем в тендере, объявленном министерством обороны США на производство портативных гелиевых источников электропитания для воинского контингента, находящегося в сложных полевых условиях. Поэтому в настоящее время высококачественные мобильные солнечные источники питания являются основным видом продукции компании. Основатели компании – ученые, физики Фр. и Дж. Деррик, работавшие в области физики полупроводников. Последние разработки фирмы – портативные рулонные гелиевые зарядные устройства.

Рулонный модуль R7

Рулонные электрические фотопреобразователи, которые выпускаются фирмой Power Film, выполнены на базе аморфного кремния. В отличие от кристаллического кремния, аморфный кремний обладает более высокой эластичностью, что вполне подходит для применения его в портативных зарядных устройствах. В соответствии с техническими условиями заказа, выполняемого для военных, это мобильное зарядное устройство не имеет абсолютно никаких стеклянных компонентов, которые, кстати, присутствуют в аналогичных изделиях других производителей. Гелиевые рулонные зарядные устройства фирмы Power Film имеют высшую степень защиты от влаги, их покрытие обеспечивает также полную защиту от соленой воды, что позволяет использовать их в условиях операций на море.

Все солнечные зарядные устройства рулонного типа выполнены по принципу «лего», то есть, могут стыковаться между собой специальными соединителями, чтобы увеличить, при необходимости, выходную мощность. Самое маломощное зарядное устройство имеет индекс R7. Оно имеет выходную мощность до семи ватт и может зарядить портативную рацию, армейский фонарь, GPS-навигатор, мобильный телефон. Рулонное зарядное устройство с максимальной мощностью 60 ватт имеет индекс R60.


Рулонный модуль R60

С помощью этого устройства заряжаются смартфоны, планшеты, походный холодильник, аккумуляторы. Для удобства пользования все гелиевые рулонные зарядные устройства оснащаются фирменными стандартными аксессуарами, в состав которых помимо всего прочего входят разъемы класса «море» - свидетельство высшей степени защиты от воздействия окружающей среды. Кроме того, каждое зарядное устройство Power Film комплектуется универсальным адаптером «розетка», к которому при необходимости можно подключить любой современный гаджет.

Специально для путешественников – компактная солнечная батарея

Для любителей пешего туризма китайская компания Solar Bag Charger выпускает солнечные батареи YG-020 (более поздняя и мощная модификация YG-050). Этот гибкий герметичный, влагозащищенный модуль помещен в специальный чехол, который обеспечивает наиболее удобные условия транспортировки и зарядки гаджетов. Предусмотрена также возможность крепления устройства на боковое стекло автомобиля с помощью вакуумных присосок. Прибор имеет выходную мощность пять ватт и позволяет заряжать мобильные телефоны, видео- и аудиоплейеры, GPS-навигатор, аккумуляторы фотоаппаратов и видеокамер и др. В комплект поставки входят кабель с USB-разъемом и шесть адаптеров, которые позволяют подключать практически любые мобильные телефоны.


Гелиевая батарея YG-020

Время полной зарядки от солнечного зарядного устройства YG-020 для мобильного телефона составляет от трех до четырех часов, для срочного разговора длительностью до 20 минут достаточно заряжать телефон в течение получаса, полная зарядка плееров МР3/МР4 длится до трех часов, GPS-навигатор заряжается полностью за пять-шесть часов.

Предусмотрена возможность установки дополнительно никель-металл-гидридного аккумулятора. Изготовители прибора утверждают, что эта солнечная батарея может работать даже в пасмурную погоду и позволяет на 60 килограммов сократить выбросы в атмосферу СО2, сэкономить два дерева или 60 киловатт/часов электроэнергии.


Гелиевая батарея YG-020(тыльная сторона)

Размеры устройства – 140×180×3 миллиметра, вес – 201 грамм.

Стоимость устройства – 1900 рублей (без аккумулятора).

Для любителей путешествовать с комфортом

Если описанные выше гибкие солнечные панели предназначены, в основном, для пеших туристов, то для тех, кто предпочитает путешествовать с комфортом, например, в автомобильных домиках, мощности этих батарей будет явно маловато. Для таких путешественников немецкая компания PayPower GmbH разработала и выпускает целую линейку гибких солнечных модулей, которые идеально компонуются с любым автомобильным домом. Используя в своих разработках солнечные батареи Sunpower™, компания выпускает гибкие солнечные батареи PayPower® различной мощности с эффективностью до 21%. Кроме того, что эти солнечные батареи имеют разную мощность, они еще и выпускаются различной формы, так как жилые домики на колесах могут быть различной величины и компоновки.


Автомобильный домик с гелиевыми модулями

Все эти солнечные модули имеют систему универсальных креплений от специальных зажимов, клипс до вакуумных присосок. Они могут размещаться на крыше, стенах домика, на капоте, на зонтике, на крыше палатки. Соединяются модули между собой специальными кабелями с водонепроницаемыми разъемами. Таким образом, можно скомпоновать походную электростанцию любой разумной мощности. Линейка мощностей солнечных батарей PayPower® имеет пять значений – 60, 65, 120, 240 и 320 ватт. Специальные размеры и формы модулей могут быть изготовлены по специальному заказу. Также по спецзаказу модули могут быть выполнены в различной цветовой гамме.


Гелиевый модуль PayPower® на крыше автодома

Вес самих модулей незначителен и не оказывает существенного влияния на загрузку автомобиля. Так, например, модуль мощностью 120 ватт весит всего 2.1 килограмма. Толщина модулей всего несколько миллиметров, поэтому на внешние габариты транспортного средства они не оказывают никакого влияния. Установка модулей предельно проста. На плоских поверхностях они крепятся с помощью алеющего слоя на тыльной поверхности модуля. Для крепления на изогнутых поверхностях используется полиуретановый клей. Если крепление модулей осуществляется вакуумными присосками, то можно легко перемонтировать модули на солнечное место, оставляя сам жилой домик в тени.

Статистика показывает, что производство гибких солнечных батарей в мире растет, а стоимость их непрерывно снижается. Это обстоятельство, а также неоспоримые преимущества этих батарей над другими источниками энергии делают гибкие гелиевые модули незаменимыми спутниками в путешествиях.

При монтаже солнечной электростанции или установке одной панели выбор варианта установки является очень важным моментом. Подавляющее большинство владельцев частных домовладений предпочитают вариант установки на крыше своих зданий, на этом варианте мы и остановимся в данной статье. Вариант наземной установки осветим в следующей статье.

Как только человек начинает процесс изучения возможности потенциальной установки Солнечной системы (электростанции), в числе первых вопросов, которыми он задаётся это - «Моя крыша подходит для установки солнечных батарей?» Солнечные батареи (панели) совместимы с большинством кровельных материалов, но некоторые из этих материалов лучше подходят для установки солнечной электростанции, чем другие.

Крыши зданий, как правило, делятся на два типа: наклонные и плоские.

Плоские кровли не отличаются большим разнообразием. Обычно это бетонная поверхность чистая или покрытая различными видами гидроизоляции: асфальт, рубероид, металлический профиль и пр. Массивы солнечных батарей легко могут быть установлены на плоской крыше, но так как такие крыши чаще всего встречаются на общественных зданиях, то мы рассмотри установку на таком типе крыш в другой статье.

Строительная индустрия, отвечая на запросы потребителей, создала большое количество кровельных материалов для наклонного типа крыш, отличающихся по составу (металлические, керамические, шиферные, мягкие каучуко-пластиковые, гибкие как рубероид и т.д.), по геометрии поверхности (волна, меандр, псевдочерепичная), по форме и размерам единичных элементов (листы, чешуйки, рулоны и пр.).

Соответственно, производители составных элементов для крепежа солнечных панелей на крыше старались охватить выпуском максимальное количество вариантов кровли и при помощи своей продукции сделать их доступными для установки как массивов солнечных модулей, так и одиночных солнечных панелей.

Для облегчения конструкции, почти все элементы крепежа солнечных панелей выполняются из алюминия. Надо сразу сказать, что грамотно спроектированная с соблюдением строительных норм кровля дома, где в расчетные снеговые нагрузки заложена норма 100кг/м2 (для Подмосковья) конечно спокойно выдержит добавку в размере 10-14 кг/м2 и при грамотном монтаже сохранит и целостность кровли и ее теплоизоляционные свойства.

Сразу скажем, что устанавливать солнечные панели на крышах покрытых недолговечным кровельным материалом категорически не рекомендуется . Поэтому, все крыши с покрытием типа рубероид и пр. для установки массива солнечных модулей не пригодны .

Направляющие, на которые происходит крепление фотоэлектрических панелей, унифицированы под несколько видов крепежных зажимов (Рис.1).



Зажимы существуют двух типов: концевые (Рис.2,3) служащие для крепления крайних фотоэлектрических панелей к направляющим, и центральные (Рис.4) служащие для крепления сразу двух солнечных панелей к направляющим, они отличаются только длинной ножки, зависящей от толщины рамки солнечной батареи.





Унифицированы так же стыковые соединители направляющих (Рис.5) и клеммы заземления системы (Рис.6), которые объединяют все элементы крепления панелей с алюминиевыми рамами фотоэлектрических панелей в одну цепь и заземления ее.








Основное разнообразие сосредоточено в элементах крепления направляющих к крыше. Тут можно выделить два варианта крепления: крепление, не нарушающее целостность кровли, и, крепления, протыкающие кровельный материал. Рассмотрим их подробнее на примере металлических крыш.

Металлические крыши , у которых соединение покровных элементов организовано в виде стыковых швов (фальцы) разнообразной формы относятся к кровлям, крепление к которым осуществляется без нарушения целостности кровли (Рис.7,8,9,10).














Металлические крыши, у которых геометрия листов соответствует волне, меандру или черепице относятся к кровлям, крепление к которым осуществляется с нарушением целостности листа (Рис.11,12).





Надо сразу сказать, что крепеж снабжен специальными уплотняющими прокладками, ликвидирующими саму возможность протечки.

Дома с металлическими крышами при хорошо организованной теплоизоляции кровли отличаются очень низким энергопотреблением, при высокой конструктивной прочности, что делает дома с металлическими крышами отличными кандидатами для установки массива солнечных панелей.

Черепичная кровля и покрытая испанской керамической плиткой кровля , тоже является хорошим местом для монтажа солнечных панелей. Стандартные проникающие крепления позволяют установить массивы солнечных панелей на крышах из черепицы без нарушения целостности кровельного материала. Черепица при этом может быть не только цементной и из других материалов (Рис.13 - 22)


















Единственным недостатком черепичной крыши является ее большой вес, но на монтаж солнечных панелей это не влияет.

Покрытия из этилен-пропиленовый диентерполимеровый каучук (ЭПДМ) используется как на плоских крышах и наклонных. Геометрия наклонных крыш плоская. Монтажники солнечных систем работая на кровлях из EPDM используя систему креплений схожую с системой креплений для черепичной крыши, что означает, что они, как правило, не делают отверстия в крыше.

Покрытия из термоплатик полиолефина (ТПО) и поливинилхлорида ПВХ как и EPDM крыши, обычно плоской геометрии поверхности и используется схожая система креплений солнечной системы к кровле (Рис.21).



Существует несколько видов крыш, установка солнечных панелей на которых вызовет изрядные сложности.

Очень не любят монтажники солнечных панелей работать на крышах покрытых шифером (плоским или волнообразным). Хрупкость данного материала при монтаже создает очень большие сложности, а так как при креплении приходится сверлить в нем отверстия, то повреждение крыши по местам нарушения сплошности остается лишь вопросом времени (Рис.22).



Сейчас у определенной категории экологически озабоченных граждан стали входить в моду деревянные крыши. Этот тип крыши, если материал при установке требует сверления отверстий в нем для установки солнечных панелей не пригоден . Они требуют специализированных монтажных узлов и оборудования, потому что монтажники не могу выходить на крышу, не повреждая ее.

Все это означает, что установка по настойчивому желанию заказчика солнечных панелей на шифер и деревянные крыши возможна, но стоит существенно дороже.

Вид материала крыши вашего дома играет большую роль в пригодности вашего дома для установки на ней солнечной системы, но это не всегда решающий фактор. Есть еще несколько вопросов, на которые вам надо ответить, чтобы определить, является ли кровля вашего дома подходящей для установки солнечной системы.

Ориентация кровли вашего дома по сторонам света.

Солнечные панели являются наиболее эффективными при ориентации строго на южную сторону света (по крайней мере в северном полушарии).))) Простой способ узнать, как ориентирована ваша крыша и, достаточно ли это хорошо для установки солнечных панелей, необходимо посмотреть фото Вашего дома на картах Яndex или Google. Если вы зададите в настройках сетку координат, она скажет вам, в каком направлении ориентирована Ваша крыша. Если Вы не в состоянии ориентировать панели на истинный юг, а только на юго-восток и на юго-запад панели будут также работать и с помощью определенных приемах при монтаже и коммутации можно добиться нормальной эффективности системы. Если ориентация вашей крыши не самая лучшая, у вас еще есть возможность установки массива панелей на грунт или на другое здание, такое как беседка, сарай, мастерская, баня, гараж или навес для автомобиля.

Освещенность кровли в разное время дня и в разное время года.

Тень, попадающая на систему, влияет на производительность солнечных панелей. Поэтому вам потребуется перед установкой сделать некоторое количество наблюдений в разное время дня и в разное время года, чтобы оценить, попадает ли на вашу крышу (и как следствие на солнечную систему) тень и в зависимости от этого сделать выбор устанавливать систему или нет. Тень могут давать другие здания, свой собственный дымоход, или деревья вокруг вашего дома. Ваш установщик может помочь вам оценить влияние тени в вашей конкретной ситуации. Конечно вы не сможете удалить здания или трубу от вашего камина, но вы можете рассмотреть возможность удаления или обрезки деревьев создавая тем самым меньше тени.

Возраст крыши.

Массив солнечных батарей имеет срок жизни 25-40 лет, так что вам необходимо будет спрогнозировать развитие ситуации на столь длительный срок, чтобы убедиться, что ваша крыша находится в хорошем состоянии и не должна быть заменена в ближайшее время. Поэтому мы и не рекомендовали ранее не устанавливать системы на крыше покрытой рубероидом и другими недолговечными покрытиями.

Если вы определяетесь с установкой солнечной системы на стадии проектирования дома, то стоит задаться вопросом «Какой формы и размера будет ваша крыша?»

Это просто, при установке панелей на кровлю требуется на 1 кВт около 8-10 м2 поверхности крыши. Имейте в виду, что такие вещи, как мансардные окна, башенки, дымовые вентиляционные трубы и люки повлияет на количество свободного места. Поэтому чем больше свободной поверхности крыши ориентированной на юг будет в вашем распоряжении, тем лучше.

И последний вопрос имеющий серьезное значение при установке солнечной системы это «Какой угол наклона вашей крыши?» Влияние угла наклона панели к горизонту в разные времена года на эффективности работы солнечной электростанции мы рассматривали в предыдущей статье.

Вариант установки солнечной системы на плоской крыше мы рассмотрели ранее и эта крыша хороша тем, что на ней при монтаже можно задать любой угол наклона панелей к горизонту.

Если ваша крыша имеет уклон, оптимальный угол составляет от 30 до 40 градусов (в наших широтах до 45 градусов, севернее больше). Имейте в виду, что для самоочистки панелей при помощи дождя, они должны быть установлены под углом не менее чем 15 градусов к горизонту. Зимой максимальный угол увеличивается и может в нашей стране достигать 70 градусов (и это не всегда спасает от налипания мокрого снега). Все это надо учитывать при проектировании угла ската кровли Вашего дома.

В данной статье мы рассматриваем случай только частных домовладений, но там где владельцев дома несколько неизбежно возникнет вопрос: «Кто владеет вашей крышей?»

Что делать, если крыша вашего дома не пригодна для установки системы солнечных батарей? Не отчаиваться!

Есть другие варианты, если ваша крыша не подходит для установки системы солнечных батарей (панелей), в том числе:

  • Установка системы солнечных батарей на земле относящейся к Вашему приусадебному участку.
  • Строительство из солнечных панелей навеса для одновременного питания вашего дома и обеспечения тени для вашего автомобиля.
  • Строительство из солнечных панелей навеса на балконе одновременного питания вашего дома и обеспечения тени для Вас.
  • Если у Вас есть теплица для сельскохозяйственных экзерсисов, то организация ее кровли из прозрачных солнечных панелей даст и тень для выращиваемых культур знойным летом и электричество для Вашего дома.

Гибкие солнечные панели - один из новых, альтернативных источников энергии. Как и жесткие модели, они обладают способностью накапливать и перерабатывать энергию, поступающую от Солнца. Многие люди искренне удивляются, когда впервые слышат о том, что солнечные элементы могут быть гибкими и занимать минимальное количество места. Покупателей также интересует, чем они отличаются друг от друга. Различия, безусловно, есть, но они не столь существенны, как кажется на первый взгляд.

Разница между жесткой и гибкой конструкцией

Как известно, обычные и поликристаллические модели производятся из кремниевых кристаллов. Материал разрезается на пластины, которые могут быть разных размеров. Толщина пластины в жесткой конструкции составляет 0,3 миллиметра. Она наклеена на основание из стеклотекстолита, а снаружи покрывается надежным герметиком. Жесткая солнечная панель очень хрупкая и часто занимает много места.

В свою очередь, гибкие солнечные батареи имеют некоторые конструкционные отличия. Определенный уровень гибкости достигается засчет изготовления и применения специальной стальной ленты, на которую напыляется кремний либо другое вещество - тонким слоем, несколько раз подряд. Выглядит такая панель в виде прочной пленки, поэтому элементы так и называются - пленочные. Далее следует прикрепление электродов и ламинирование. Получившуюся модель можно изогнуть в любую удобную сторону, а при необходимости - аккуратно скрутить в рулон. Если она сложена, ей понадобится чехол или футляр.

В разложенном виде тонкопленочные солнечные батареи обладают завидной прочностью - по причине гибкости стальной основы. Уже разработаны портативные переносные варианты: все их составные части просто нашиваются на основу, а саму панель можно легко сложить в форме гармошки.

Отличие таких необычных элементов питания от жестких вариантов заключается в том, что конструкция частично состоит из полупроводников, изготовленных из меди-индия. Также для их создания используются теллурид кадмия и селенид, а сами полупроводники, как уже отмечалось, прикрепляются на пленку.

Немного из истории технологии

Несмотря на то, что сейчас такие панели стоят недешево, себестоимость при их производстве невысока. Поэтому в ближайшее время есть шансы как снижения цены, так и выхода их в лидеры по сравнению с жесткими вариантами.

Тонкопленочные солнечные батареи легки, эластичны, их можно разместить везде, даже на одежде, если есть такая необходимость. Что касается полупроводников, входящих в состав их конструкции, они уже давно используются при производстве современных тонких и легких гаджетов - смартфонов, планшетов, ноутбуков. Чем больше энергии нужно, тем больше должна быть и площадь панели. Однако солнечная батарея, гибкая основа которой имеет очевидные преимущества перед жесткой, не займет много места.

Что касается коэффициента полезного действия, невзирая на его скромные показатели, он постоянно улучшается при производстве. Так, самые первые гибкие солнечные батареи имели в своей основе аморфный кремний, который наносился на подложку. КПД их был невысок, от 4 до 5%, а работали они минимальное количество времени. Далее производителям удалось повысить в два раза, до 8%, а срок работы панелей постепенно стал таким же, как и у жестких предшественниц. Последнее поколение разработок имеет КПД уже 12%. По сравнению с первым опытом, это уже очевидный прогресс.

Известно, что гибкая солнечная панель является самой перспективной, если для ее изготовления применяется теллурид кадмия. Он прекрасно поглощает свет и был подробно исследован еще в 70-х годах прошлого столетия, когда речь шла об освоении космического пространства. Долгое время исследователи сомневались в том, токсичен он или нет. Сейчас уже выяснено, что в быту он не является опасным. КПД таких гибких панелей составляет около 11%, а цена за 1 ватт электроэнергии оказалась на одну треть меньше, чем у аналогов на кремниевой основе.

Преимущества и недостатки

Тонкопленочные солнечные батареи имеют высокий уровень производительности даже в том случае, если наблюдается только рассеянный солнечный свет. Если в регионе преобладает количество пасмурных дней, именно такой вариант является предпочтительным перед жесткими кремниевыми панелями.

Пленка эффективна и в странах с жарким климатом, так как она обладает стойкостью и долго выдерживает жару. Она может стать не только источником альтернативной энергии, но и послужить интересным дизайнерским ходом. Благодаря гибкости, возможности ее монтажа значительно расширяются, а конструкция крыши точно не пострадает, если имеются ограничения в плане нагрузки.

Однако перед тем, как серьезно задуматься о ее приобретении, следует знать и о ряде недостатков:

  • Несмотря на постоянное совершенствование разработок, пленочная солнечная батарея пока еще не может похвастаться высоким уровнем КПД и мощности.
  • Она пока стоит очень дорого: производство таких элементов еще не поставлено на широкий оборот.
  • Срок службы невысок: обычно, он редко превышает 3-4 года.
  • В жаркую погоду может очень сильно нагреваться, что снижает все рабочие показатели.

Сфера применения

  • Поскольку это легкая и часто портативная модель, ее часто устанавливают в электромобили и дроны.
  • Берут с собой в походы. С ее помощью можно легко согреться, просто прикрепив на одежду или к рюкзаку.
  • Благодаря тому, что гибкая панель может повторить любую форму, она легко крепится на черепице крыши или шифере. Это идеальный вариант для малогабаритного охотничьего домика и палатки. Прикрепляется она просто и легко. Как правило, лучшим фиксатором служит двухсторонний скотч или специальный герметик.

Итак, гибкие панели - неплохой альтернативный источник энергии, который уже нашел применение в определенных областях. Технологии их изготовления еще находятся в процессе совершенствования. По этой причине на приемлемую цену таких элементов пока рассчитывать не приходится. Вероятнее всего, снижение их стоимости произойдет уже в ближайшем будущем, когда производство расширится и они станут более доступными для приобретения.