Генератор своими руками из асинхронного двигателя. Асинхронный электродвигатель в качестве генератора Может ли электродвигатель вырабатывать электроэнергию


Увы, но перебои с подачей электричества в некоторые районы могут возникать и сейчас, в XXI веке. Неважно, в чем причина подобных перебоев: хоть обрыв линии из-за плохих условий, хоть плановое отключение.

В любом из случаев потребитель не всегда может безболезненно перенести несколько часов без электричества. Вот тут и приходят на выручку генераторы для дачи и частного сектора вообще.

Автономный генератор для выработки электроэнергии представляется наиболее оптимальным решением не оставаться без электричества и продолжать жить и пользоваться бытовыми приборами на зависть соседям.

Так что купить, а прежде рассмотреть варианты автономных станций – это первоочередная задача.

Какие бывают генераторы

Перед тем, как выбрать генератор для дачи, нужно знать их основные различия. А это, в свою очередь, может влиять на производительность и еще на несколько факторов. На сегодняшний день три самых популярных вида:

  • бензиновый генератор;
  • дизельный генератор;

Уже с названия стает понятно, что отличие состоит в виде топлива, на котором работает автономная установка. Однако не было бы смысла человечеству придумывать несколько типов производителей напряжения и, скорее всего, между этими тремя типами есть определенные различия.

Во-первых, бензин, дизельное топливо и газ – для каждого по-своему доступны. Нет нужды, полагаем, приобретать бензиновый генератор, если к дому подведена газовая магистраль. Ведь стоимость газа по-прежнему остается более приемлемой, чем стоимость газа. С другой стороны, имея в запасе несколько литров бензина или дизельного топлива, можно точно быть уверенным, что одновременное отключение электричества и газа не помешает вашей работе.

Второе, что заслуживает внимания, это работа бытовых генераторов на разных видах топлива. Одни больше производят шума при работе, другие меньше; одни более габаритные, другие более компактны; одни легко заводятся при любой погоде, другие могут иметь проблемы с запуском в морозы.

Выбираем агрегат для частного пользования

Дизель или газовый, а может бензиновый – это довольно важно. Но не менее важно учитывать и другие особенности, по которым нужно производить отбор:


Шум при работе

Бензиновые и дизельные генераторы имеют единственный существенный недостаток – достаточно ощутимый уровень шума в рабочем состоянии. Этот недостаток является в какой-то степени обязательным условием работы. Согласитесь, что бесшумного двигателя вам еще не встречалось.

Аналогичная ситуация наблюдается и здесь: при оборотах двигателя генератора создается определенный шум. Учитывая, что установка обычно работает довольно продолжительное время и монотонный звук раздражает не только хозяев, но и соседей, нужно находить поиск решения данной проблемы.


По правилам пожарной безопасности генератор для загородного дома должен устанавливаться в хорошо проветриваемом помещении. Если соорудить отдельное помещение с приточно-вытяжной вентиляцией, то уровень звука частично уменьшится.

Насколько сильно – зависит от применяемых материалов при строительстве. Однако это потребует дополнительных расходов, сил и времени. Целесообразность данной идеи определяется весом установки. Автономный генератор больших размеров, который не будет переставляться с места на место, скорее всего, потребует такого помещения.

Строительная практика также часто знает случаи, когда для бензинового или дизельного генераторов на участке сооружалась яма с обложенными кирпичом стенами и с крышей. При обеспечении циркуляции воздуха и максимальной при этом герметичности удается достаточно высоко снизить уровень шумов от работающего прибора.

Вместо заключения

То, что генератор способен упростить нашу жизнь – это давно доказанная теорема. Даже, скорее всего, аксиома, которая не требует особых доказательств. Поломки, которые могут случаться в процессе эксплуатации, совершенно не означают, что агрегат недостойный внимания.

Если речь идет о заводском браке, то значит, просто человек доверился некачественному производителю. А если поломка по вине владельца, то зачем винить агрегат? Покупка генератора – полезное приобретение, если уметь им правильно пользоваться.

Электрические двигатели иногда называют «вторичными», поскольку энергию для них необходимо предварительно выработать при помощи «первичного» двигателя и электрогенератора . Но эти бездымные и практически бесшумные, мощные и долговечные двигатели успели занять первое место среди других.

С начала 19 века известно, что провод с током, помещенный между полюсами магнита начинает двигаться. Если из какого-либо проводника сделать рамку и пустить ток по ее контуру, рамка повернется на 90 градусов. Если же взять много таких рамок и натянуть их на общий барабан, а вокруг поставить мощные магниты – получтися электродвигатель постоянного тока. Барабан называют якорем, а концы рамок – витков – присоединяют к распределительному устройству – коллектору – на валу якоря.

Коллектор – это набор изолированных друг от друга пластин, которые во время вращения вала поочередно касаются двух неподвижных металлических щеток. По щеткам к пластинам коллектора подводится постоянный ток. Он проходит по рамке в тот момент, когда щетки касаются соединенных с нею пластин коллектора. А потом вместе с якорем, коллектор поворачивается, к щеткам подходят две другие пластины, и ток получает следующая рамка.

Электродвигатели постоянного тока могут быстро набирать скорость вращения вала и менять ее по нашему усмотрению. Они легко могут дать задний ход, начав вращаться в противоположном направлении.

Однако большинство электростанций вырабатывают не постоянный, а переменный ток

И поэтому, чтобы питать им электродвигатель постоянного тока, переменный ток предварительно выпрямляют . Существуют и электрические двигатели переменного тока, способные напрямую без выпрямления потреблять ток из сети. В таких двигателях неподвижная часть (корпус) называется статором. На внутренней поверхности статора находится три обмотки, три отдельные катушки с проводами, расположенные под углом 120 градусов друг к другу.

Когда через такую обмотку пропускают электрический ток, она становится электромагнитом. Катушки соединяют так, что переменный ток подается на них не одновременно, а со сдвигом по времени. Магнитное поле каждой катушки то усиливается, то ослабевает, то пропадает совсем. В итоге получается, что магнитное поле бежит по внутренней поверхности статора. Это бегущее, «вращающееся» поле может увлечь за собой проводник, поскольку в первый момент, когда проводник еще неподвижен, вихрь магнитных силовых линий возбуждает в нем электрический ток. Дальнейшее движение полностью подчиняется законам движения проводника с током в магнитном поле.

В качестве подвижной части, называемой ротором, обычно применяют обмотку из провода, или делают «беличье колесо» — клетку в виде цилиндра с параллельными прутьями. Концы прутьев соединяют медными кольцами.

В обмотку статора электродвигателя дают переменный ток, и возникает движущееся магнитное поле. Следом за полем начинает вращаться и ротор, совершая полезную работу.

Но скорость ротора никогда не достигает скорости вращения магнитного поля — он всегда немного отстает, а магнитное поле как бы «скользит» вокруг ротора. Без такого скольжения невозможна работа двигателя, поскольку в роторе не будут индуктироваться токи, необходимые для движения в магнитном поле. Из-за этого явления подобные двигатели называют асинхронными, то есть, неодновременными.

Электрические двигатели не имеют равных по к.п.д. – более 90% подведенной электроэнергии они преобразуют в полезную работу. Однако не стоит забывать и о том, что все-таки электродвигатель является вторичным, и при выработке для него электрической энергии неизбежны иные энергетические потери на первичных двигателях, при передаче энергии и т.п.

Просто о сложном – Электрический двигатель для производства электроэнергии

  • Галерея изображений, картинки, фотографии.
  • Электрический двигатель – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Электрический двигатель.
  • Ссылки на материалы и источники – Электрический двигатель для производства электроэнергии.

Не всегда местные электросети способны полноценно обеспечивать электричеством дома, особенно, если это касается загородных дач и особняков. Перебои с постоянным электроснабжением или же его полное отсутствие заставляет искать получения электричества. Одним из таких является использование – прибора, способного преобразовывать и накапливать электричество , используя для этого самые необычные ресурсы (энергия , приливов и отливов). Его принцип работы достаточно простой, что делает возможным сделать электрогенератор своими руками. Возможно, самодельная модель не сможет конкурировать с аналогом заводской сборки, однако это отличный способ сэкономить более 10 000 рублей. Если рассматривать самодельный электрогенератор в качестве временного альтернативного источника электроснабжения, то вполне можно обойтись и самоделкой.

Как сделать электрогенератор, что для этого потребуется, а также какие нюансы придется учитывать, узнаем далее.

Желание иметь в своем пользовании электрогенератор омрачается одной неприятностью – это высокая стоимость агрегата . Как ни крути, но самые маломощные модели имеют достаточно заоблачную стоимость – от 15 000 рублей и выше. Именно этот факт наталкивает на мысль о собственноручном создании генератора. Однако, сам процесс может быть затруднительным , если:

  • нет навыка в работе с инструментом и схемами;
  • нет опыта в создании подобных приборов;
  • не имеется в наличии необходимых деталей и запчастей.

Если же все это и огромное желание присутствуют, то можно попробовать собрать генератор , руководствуясь указаниями по сборке и приложенной схемой.

Не секрет, что покупной электрогенератор будет обладать более расширенным перечнем возможностей и функций, в то время как самоделка способна подводить и давать сбои в самые неподходящие моменты. Поэтому, покупать или делать своими руками – вопрос сугубо индивидуальный, требующий ответственного подхода.

Как работает электрогенератор

Принцип работы электрогенератора основывается на физическом явлении электромагнитной индукции. Проводник, проходящий через искусственно созданное электромагнитное поле, создает импульс, который преобразуется в постоянный ток.

Генератор имеет двигатель, который способен вырабатывать электричество, сжигая в своих отсеках определенный вид топлива: , или . В свою очередь топливо, попадая в камеру сжигания, в процессе горения вырабатывает газ, который вращает коленчатый вал. Последний передает импульс ведомому валу, который уже способен предоставить определенное количество энергии на выходе.

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.

Асинхронные электродвигатели - самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части - статора и подвижной части - ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название - короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.

Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора.

Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели , которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы - трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность.

Работа асинхронного электродвигателя в генераторном режиме

Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим.

Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U 2 ·C·10 -6 ,

где С - ёмкость конденсаторов, мкФ.

Мощность генератора,кВ·А Холостой ход
ёмкость, мкФ реактивная мощность, квар cos = 1 cos = 0,8
ёмкость, мкФ реактивная мощность, квар ёмкость, мкФ реактивная мощность, квар
2,0
3,5
5,0
7,0
10,0
15,0
28
45
60
74
92
120
1,27
2,04
2,72
3,36
4,18
5,44
36
56
75
98
130
172
1,63
2,54
3,40
4,44
5,90
7,80
60
100
138
182
245
342
2,72
4,53
6,25
8,25
11,1
15,5

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости. Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы. Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте. Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

  • бытовые сварочные трансформаторы;
  • электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);
  • электропечи типа "Россиянка", "Мечта" мощностью до 2 кВт;
  • электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии.

Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт. Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме - "резки" металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ - косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора.

Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит "драгоценное" топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа "Ока", "Волга", поливальных насосов "Агидель", "БЦН" и пр. У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) - больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других - коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы - ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: "фазу" и "ноль".

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он "не любит" холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы - 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме "холостого хода" должно на 4…6 % превышать промышленное значение 220/380 В.