Осмотическая электростанция. Энергия осмоса. Россия и Япония как перспективные территории

Думая о возобновляемой энергии, сразу на ум приходит энергия ветра, солнца, приливов и отливов, и устройства их преобразовывающие – это уже привычные на сегодня ветроэнергетические установки, солнечные фотоэлектрические преобразователи, гидротурбины. Все это уже массово используются во всем мире. Но на этом список возобновляемых источников энергии не заканчивается. Есть еще один вид получения энергии, который еще не стал распространенным, но это дело будущего, - это осмотическая энергия.

Недавно стало известно о запуске в Норвегии первой в мире электростанции, позволяющей извлекать энергии из разности концентрации соли в пресной воде и в соленой воде. Производство электроэнергии осуществляется в результате явления осмоса. Станция расположена недалеко от столицы Норвегии Осло на берегу залива Осло-фьорд. Инвестором строительства выступила норвежская энергетическая компания Statkraft, которая является третьей по величине производителем энергоресурсов в скандинавском регионе, а также крупнейшим производителем энергии, основанной на возобновляемых источниках энергии в Европе. Эта новость и послужила поводом для написания данного материала.

Итак, что же такое осмотическая энергия?

Осмотическая энергия – это энергия, получаемая в результате осмоса, или как еще можно сказать, в результате процесса диффузии растворителя из менее концентрированного раствора в более концентрированный раствор.

Согласно Wikipedia.org, явление осмоса наблюдается в тех средах, где подвижность растворителя больше подвижности растворённых веществ. Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя.

Осмос играет большую роль в биологических процессах. Благодаря ему в клетку попадают питательные вещества, и наоборот – выводятся ненужные. Благодаря осмоса листья растений впитывают влагу.

Осмотическая энергия относится к возобновляемому источнику, который, в отличие от солнечной или ветровой энергий, производит предсказуемое и устойчивое количество энергии независимо от погоды. И это можно сказать главное одно из преимуществ этой технологии.

Почему осмос не стали использовать раньше для получения энергии, а только сейчас?

Главная сложность заключается в эффективности и стоимости использующихся мембран. Это и является камнем преткновения. Производство электроэнергии осуществляется в генераторах, на которые подается соленая вода из резервуаров, где смешивается пресная и соленая вода. Чем быстрее происходит процесс смешения, тем быстрее вода подается на турбины, тем больше можно получить энергии.

Идея производить энергию, используя осмос, появилась в 70-х годах прошлого столетия. Но тогда мембраны были еще недостаточно эффективными, как сегодня.

Осмотическая электростанция в Норвегии

Построенная опытная электростанция использует разность концентрации соли в пресной и соленой воде. Морскую и речную воду направляют в камеру, разделённую мембраной. Благодаря явлению осмоса, молекулы стремятся перейти в ту область камеры, где концентрация растворенных веществ, в данном случае соли, выше. Этот процесс приводит к увеличению объема в отделении с соленой водой. Что в результате образуется повышенное давление, которое создает напор, эквивалентное воздействию водяного столба высотой 120 метров. Этот напор направляется на турбину, вращающую генератор.

В построенной электростанции применяется мембрана с эффективностью 2-3 Ваттт/м2. Поэтому главной задачей является поиск более эффективных мембран. По словам исследователей, чтобы применение осмотической энергии было выгодным, необходимо добиться эффективности мембран более 5 Ватт/м2.

Сейчас станция генерирует не много энергии - 4 кВатт. В будущем планируется постоянно увеличивать мощность. В планах компании Ststkraft к 2015 году вывести станцию на самоокупаемый уровень.

К недостаткам можно отнести то, что не везде возможно построить такую электростанцию. Ведь для этого одновременно необходимо два источника воды – пресной и соленой. Поэтому строительство невозможно в глубине континента, а только на побережьях вблизи источника соленой воды. В будущем планируется создать мембраны, использующие разность концентрации соли только морской воды.

Еще одним недостаток – это эффективность работы станции, связанная прежде всего с эффективностью работы применяемых мембран.

Задача станции состоит главным образом в исследовании и разработки технологий для коммерческого применения в дальнейшем. Это определенно шаг вперед. Ведь мировой потенциал осмотической энергии, как заявляет компания Statkraft, оценивается в 1600-1700 ТВатт·часов энергии ежегодно, которая эквивалентна 50 процентам полного производства энергии в Европейском союзе.

Осмос (от греческого слова Osmos - толчок, давление), диффузия вещества, обычно растворителя, через полупроницаемую мембрану, разделяющую раствор и чистый растворитель или два раствора различной концентрации. Полупроницаемую мембрану - перегородка, пропускающая малые молекул растворителя, но непроницаемая для больших молекул растворенного вещества. Явление осмоса (выравнивание концентраций растворов, разделенных полупроницаемой мембраной) лежит в основе обмена веществ, всех живых организмов. Например, стенки клеток растений, животных и человека представляют собой естественную мембрану, которая является частично проницаемой, поскольку она свободно пропускает молекулы воды, но не молекулы других веществ. Когда корни растений впитывало воду, стены их клеток формируют натуральную осмотическую мембрану, которая пропускает молекулы воды и отторгается большинство примесей. Травы и цветы стоят вертикально только за счет так называемого осмотического давления. Поэтому при недостатке воды они выглядят пожухлыми и вялыми. Фильтрующая способность природной мембраны уникальна, она отделяет вещества от воды на молекулярном уровне и именно это позволяет любому живому организму существовать.

Применение мембран для отделения одних компонентов раствора от других известно очень давно. В первой Аристотель обнаружил, что морская вода опресняется, если ее пропустить через стенки воскового сосуда. Изучение этого явления и других мембранных процессов началось гораздо позже, в начале XVIII века, когда Реомюр использовал для научных целей полупроницаемые мембраны природного происхождения. Но к середине 20-х годов прошлого века все эти процессы имели сугубо теоретический интерес, не выходя за пределы лабораторий. В 1927 году немецкая фирма "Сарториус" получила первые образцы искусственных мембран. И только в середине прошлого века американские разработчики, наладили производство ацетатцеллюлозных и нитроцеллюлозных мембран. В конце 50-х - начале 60-х годов с началом широкого производства синтетических полимерных материалов появились первые научные работы, которые легли с основу промышленного применения обратного осмоса.

Первые промышленные возвратно-осмотические системы появились только в начале 70 X лет, поэтому это сравнительно молодая технология по сравнению с тем же ионным обменом или адсорбцией на активированных углях. Однако, в Западных странах обратный осмос стал одним из самых экономичных, универсальных и надежных методов очистки воды, который позволяет снизить концентрацию компонентов, находящихся в воде, на 96-99% и практически на 100% избавиться микроорганизмов и вирусов. Механизм переноса молекул воды через осмотическую мембраны чаще всего представляет собой обычную фильтрацию, при которой происходит задержка частиц размером больше диаметра поросмотичнои мембраны. Выравнивание концентраций по обе стороны такой мембраны возможно только при односторонней диффузии растворителя. Поэтому осмос всегда идет от чистого растворителя к раствору или от разбавленного раствора к концентрированному раствору. В частности, явление осмоса наблюдается, когда два соляные растворы с различными концентрациями разделены полупроницаемой мембраной. Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей - нет. Если по разные стороны полупроницаемой мембраны находятся солевмистни растворы воды с различной концентрацией солей, молекулы воды будут перемешаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Через явление осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением. Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется "осмотическим давлением". На Рис. 23.1. Приведена схема, иллюстрирующая явление осмоса.

Рис. 23.1.

Принцип работы осмотического электростанции основан на образовании осмотического давления. В местах, где река впадает в море, пресная речная вода просто перемешивается с соленой морской водой, и никакого давления, которое могло бы послужить источником энергии, там не наблюдается. Однако, если перед смешиванием морскую воду и пресную разделить фильтром - специальной мембраной, пропускающей воду, но не пропускающей соли, то стремление растворов к термодинамического равновесия и выравниванию концентраций сможет реализоваться только за счет того, что вода будет проникать в раствор соли, а соль в пресную воду не попадет. Специальная мембрана, пропускающая воду, но не проницаема молекулы соли, ставится между двумя резервуарами. В один из них заполняется пресной водой, в другой заполняется соленой водой. Поскольку такая система стремится к равновесию, более соленая вода как бы вытягивает пресную воду из резервуара. Если же это происходит в закрытом резервуаре, то со стороны морской воды возникает избыточное гидростатическое давление. При этом, появляется давление, создает водный поток. Если теперь установить турбину с генератором, избыточное давление будет вращать лопасти турбины и производить электричество На Рис. 23.2. Показана упрощенная схема осмотического станции. На этом Рис.: 1 - морская вода; 2 речная вода; 3 - фильтры; 4 - мембрана; 5 - рабочая камера; 6 - вывод отработанной речной воды; 7 - турбина с электрическим генератором; 8 - вывод.

Рис. 23.2.

Теоретические разработки в этой области появились еще в начале XX века, но для их реализации не хватало главного - подходящей осмотического мембраны. Такая мембрана должна была выдерживать давление, в 20 раз превышающий давление обычного бытового водопровода, и иметь очень высокую пористость. Создание материалов с подобными свойствами стало возможным с развитием технологий производства синтетических полимеров. Действительно, толщина эффективной мембраны составляет около 0,1 микрометра. Для сравнения: человеческий волос имеет в диаметре от 50 до 100 микрометров. Именно эта тончайшая пленка и отделяет, в конечном итоге, морскую воду от пресной воды. Понятно, что столь тонкая мембрана не может сама по себе выдержать высокое осмотическое давление. Поэтому она наносится на пористую напоминающий губку но чрезвычайно прочную основу. Кстати, мембрана для прямого осмоса - это не тонкая стенка, которую рисуют на упрощенных схемах, а длинный рулон, заключенный в цилиндрический корпус. Соединение с корпусом сделаны таким образом, что во всех слоях рулона с одной стороны мембраны всегда находится пресная вода, а с другой - стороны морская, как это показано на Рис. 23.3. На этом Рис.: 1 - пресная вода; 2 - морская вода; 3 - мембрана. На Рис. 23.4. Показано устройство мембраны, помещенной в металлический корпус, цилиндрической формы. На этом Рис.: 1 - пресная вода; 2 - морская вода; 3 - мембрана; 4 - металлический корпус. Применяемые в настоящее время композитные мембраны позволяют значительно снизить гидродинамическое сопротивление. В них тонкий селективный слой наносится химическим путем на пористую основу (подложку). Толщина селективного слоя составляет 0,1-1,0 мкм, а толщина пористой основы - 50-150 мкм. Подложка практически не создает сопротивления потоку благодаря широким порам, а сопротивление селективного слоя значительно снижается благодаря значительному сокращению его толщины. В целом композитная структура мембраны обеспечивает механическую прочность за счет

Рис. 23.3.

Рис. 23.4.

толщины пористой подложки, а кроме того, позволяет снизить общее сопротивление мембраны за счет тонкости селективного слоя. Селективный слой обратных осмотических мембран выполнен из полиамидного материала.

На Рис. 23.S. показано устройство осмотического станции, использует рулонные мембраны.

На этом Рис.: 1 - введение морской воды; 2 - введение речной воды; 3 - фильтры; 4 - рулонные мембраны; 5 - герметичная камера с высоким осмотическим давлением; 6- турбина с электрогенератором.

В 2009 году в Норвегии в городе Тофте начала работу первая в мире электростанция, использующая разницу солености морской и пресной воды для получения электроэнергии. В построенной осмотического электростанции, в отсеке с морской водой создается давление, эквивалентное давления столба воды высотой 120 метров. Это давление приводит в действие вал турбины которой соединен с электрогенератором. Пресная вода самотеком поступает на мембрану. Забор морской воды осуществляется в Тофте с глубин от 35 до 50 метров - в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от органических остатков, забивают ее микропоры. На сегодняшний день эта осмотическое станция производит около 1 кВт энергии. В ближайшее время эта цифра может увеличиться до 2-4 кВт. Для того чтобы можно было говорить о рентабельности производства, необходимо

Рис. 23.5. Осмотическое станция с рулонными мембранами

получить выработка около 5 кВт. Однако, это вполне реальная задача. До 2015 года планируется построить большую станцию, которая обеспечит выработку 25 МВт, что позволит питать электричеством 10000 средних домохозяйств. В перспективе же предполагается, что осмотические электростанции станут такими мощными, что смогут производить 1700 ТВт в год, столько, сколько сейчас производит половина Европы.

Преимущества осмотических станций. Во-первых, соленая вода (для работы станции подходит обычная морская вода) является неисчерпаемым природным ресурсом. Поверхность Земли на 94% покрыта водой, 97% которой является соленой, поэтому для таких станций всегда будет топливо. Во-вторых, для строительства осмотических электростанций не нужно строительства специальных гидротехнических сооружений. Экологичность данного способа получения электроэнергии. Никаких отходов, окисляются материалов для резервуаров, вредных испарений. Осмотические электростанции могут быть установлены даже в пределах города, не нанося никакого ущерба его жителям.

Недавно Япония сообщила, что планирует производить энергию с помощью осмотических станций. Япония окружена со всех сторон океаном, в который впадают многочисленные реки. Потому что они текут постоянно, процесс добычи электроэнергии станет непрерывным. Среди плюсов осмотического способа получения энергии это независимость от рельефа местности, станция сможет работать и на равнине. Основными являются географические условия, при которых происходит смешение пресной и соленой воды. Таким образом, устанавливать осмотические электростанции можно в любых районах Японии, где реки впадают в океан. Осмотическая станция смогут производить 5-6 миллионов кВт энергии, для сравнения такой же объем производят 5-6 атомных электростанций, как утверждает Акихико Таниока, профессор Токийского технического университета. К тому же, Япония является одним из главных производителей осмотических мембран. Сейчас на долю японских компаний приходится 70% мирового импорта мембран.

Сразу необходимо предупредить: в заголовке нет ошибки, о космической энергии, созвучной названию, рассказа не будет. Ее мы оставим эзотерикам и фантастам. А речь пойдет о привычном явлении, с которым мы в течение всей жизни сосуществуем рядом.

Многие ли знают, за счет каких процессов соки в деревьях поднимаются на значительную высоту? Для секвойи она составляет более 100 метров. Происходит эта транспортировка соков в зону фотосинтеза за счет работы физического эффекта - осмоса . Заключается он в простом явлении: в двух растворах разной концентрации, помещенных в сосуд с полупроницаемой (проницаемой только для молекул растворителя) мембраной, спустя некоторое время появляется разность уровней. В дословном переводе с греческого языка осмос - это толчок, давление .

А теперь от живой природы вернемся к технике. Если в сосуд с перегородкой поместить морскую и пресную воду, то за счет разной концентрации растворенных солей появляется осмотическое давление и уровень морской воды поднимется. Молекулы воды перемещаются из зоны высокой их концентрации в зону раствора, где примесей больше, а молекул воды меньше.

Перепад в уровнях воды дальше используется обычным образом: это знакомая работа гидроэлектростанций. Вопрос только состоит в том, насколько эффект осмоса пригоден для промышленного применения? Расчеты показывают, что при солености морской воды 35 г/литр за счет явления осмоса создается перепад давления 2 389 464 Паскаля или около 24 атмосфер. На практике это эквивалентно плотине высотой 240 метров.

Но кроме давления еще очень важной характеристикой является селективность мембран и их проницаемость. Ведь турбины вырабатывают энергию не от перепада давления, а благодаря расходу воды. Вот здесь, до недавнего времени, существовали очень серьезные трудности. Подходящая осмотическая мембрана должна выдерживать давление, превышающее в 20 раз давление в привычном водопроводе. При этом иметь высокую пористость, но задерживать молекулы солей. Сочетание противоречивых требований долго не позволяло использовать осмос в промышленных целях.

При решении задач опреснения воды была изобретена мембрана Лоэба , которая выдерживала колоссальное давление и задерживала минеральные соли и частицы до 5 микрон. Применить мембраны Лоэба для прямого осмоса (выработки электроэнергии) долго не удавалось, т.к. они были чрезвычайно дороги, капризны в эксплуатации и обладали низкой проницаемостью.

Прорыв в использовании осмотических мембран наступил в конце 80-х годов, когда норвежские ученые Хольт и Торсен предложили использовать модифицированную полиэтиленовую пленку на керамической основе . Совершенствование структуры дешевого полиэтилена позволило создать конструкцию спиральных мембран, пригодных для использования в производстве осмотической энергии . Для проверки технологии получения энергии от эффекта осмоса в 2009 году была построена и запущена первая в мире экспериментальная осмотическая электростанция .

Норвежская энергетическая компания Statkraft, получив государственный грант, и затратив более 20 млн. долларов, стала пионером в новом виде энергетики. Построенная осмотическая электростанция вырабатывает около 4 кВт мощности, которой хватает для работы... двух электрических чайников. Но цели постройки станции гораздо серьезней: ведь отработка технологии и испытание в реальных условиях материалов для мембран открывают путь к созданию значительно более мощных сооружений.

Коммерческая привлекательность станций начинается с эффективности съема мощности более 5 Вт с квадратного метра мембран. На норвежской станции в Тофте это значение едва превышает 1 Вт/м2. Но уже сегодня испытываются мембраны с эффективностью 2,4 Вт/м2, а к 2015 году ожидается достижение рентабельного значения 5 Вт/м2.

Но есть обнадеживающая информация из исследовательского центра Франции. Работая с материалами на основе углеродных нанотрубок, ученые получили на образцах эффективность отбора энергии осмоса около 4000 Вт/м2. А это уже не просто рентабельно, а превышает эффективность практически всех традиционных источников энергии.

Еще более впечатляющие перспективы обещает применение . Мембрана толщиной в один атомный слой становится полностью проницаема для молекул воды, задерживая при этом любые другие примеси. Эффективность такого материала может превышать 10 кВт/м2. В гонку по созданию мембран высокой эффективности включились ведущие корпорации Японии и Америки.

Если удастся в течении ближайшего десятилетия решить проблему мембран для осмотических станций, то новый источник энергии займет ведущее место в обеспечении человечества экологически чистыми энергоносителями. В отличие от энергии ветра и солнца, установки прямого осмоса могут работать круглые сутки и не зависят от погодных условий.

Мировой резерв энергии осмоса огромен - ежегодный сброс пресных речных вод составляет более 3700 кубических километров. Если удастся использовать только 10% этого объема, то можно вырабатывать более 1,5ТВт/часов электрической энергии, т.е. около 50% европейского потребления.

Но не только этот источник может помочь решить энергетическую проблему. При наличии высокоэффективных мембран можно использовать энергию глубин океана. Дело в том, что соленость воды зависит от температуры, а она на разных глубинах разная.

Используя температурные градиенты солености, можно не привязываться к устьям рек в строительстве станций, а просто размещать их в акватории океанов. Но это уже задача отдаленного будущего. Хотя практика показывает, что делать прогнозы в технике - это неблагодарное занятие. И будущее уже завтра может постучаться в нашу действительность.

Начала работу первая в мире электростанция, позволяющая извлекать энергию из разницы в солёности морской и пресной воды. Установка построена норвежской государственной компанией Statkraft в городке Тофте (Tofte) близ Осло.

Гигантский агрегат вырабатывает электричество, используя природное явление осмоса (osmosis), которое позволяет клеткам наших организмов не терять влагу, а растениям поддерживать вертикальное положение.

Поясним. Если разделить два водных раствора с разными концентрациями солей полупроницаемой мембраной, то молекулы воды будут стремиться перейти в ту часть, где их меньше, то есть туда, где концентрация растворённых веществ выше. Этот процесс приводит к увеличению объёма раствора в одном из отделений.

Нынешняя опытная электростанция расположена у устья реки, впадающей в Северное море. Морскую и речную воду направляют в камеру, разделённую мембраной. В отсеке с солёной водой осмос создаёт давление, эквивалентное воздействию водяного столба высотой 120 метров. Поток идёт на турбину, вращающую генератор.

Правда, если вычесть ту энергию, что идёт на подпитывающие насосы, то получается, что пока норвежская махина создаёт очень мало энергии (2-4 киловатта). Отметим, что чуть позже планируется повысить выход до 10 киловатт, а через 2-3 года создать ещё одну тестовую версию, вырабатывающую до одного мегаватта энергии.

К тому же по ходу эксплуатации установки предстоит решить массу проблем. Например, нужно будет найти способ борьбы с загрязняющими фильтры бактериями. Ведь, несмотря на предварительную очистку воды, вредоносные микроорганизмы могут заселить все участки системы.

«Без сомнений, трудности будут, – говорит глава нового предприятия Стейн Эрик Скилхаген (Stein Erik Skilhagen). – Какие именно, мы пока предсказать не в состоянии». Но ведь надо же с чего-то начинать.

Схемы, иллюстрирующие явление осмоса и строение новой станции. Подробнее о технологии и предыстории её развития можно почитать в этом PDF-документе (иллюстрации University of Miami, Statkraft).

«Потенциал технологии очень высок», — добавил на церемонии открытия министр энергетики Терье Риис-Йохансен (Terje Riis-Johansen).

По оценкам Statkraft, занимающейся разработкой и созданием установок, вырабатывающих возобновляемую энергию, общемировой годовой потенциал осмотической энергии (osmotic power) составляет 1600-1700 тераватт-часов. А это ни много ни мало – 10% всего мирового потребления энергии (и 50% энергопотребления Европы).

Многие крупные города стоят близ устья рек, так почему бы им не обзавестись подобными электростанциями? Тем более что встроить такую машину можно даже в подвал офисного здания.

В один прекрасный день 1747 года французский аббат Нолле слил недопитый намедни бордо в свиной мочевой пузырь, доставленный с кухни, и погрузил его в бочонок с водой. Через 262 года, 24 ноября 2009-го, норвежская кронпринцесса Метте-Марит пригубила бокал с шампанским. Как же связаны эти два события? И Нолле, и принцесса совершили выдающиеся открытия. Аббат первым в мире сумел описать феномен осмоса и базовые свойства мембраны, а Метте-Марит, разрезав символическую ленточку, открыла первую в мире осмотическую электростанцию Statcraft в Тофте.

Владимир Санников

О том, чем на самом деле наполнил вошедший в историю свиной пузырь аббат, а по совместительству великий физик-экспериментатор Жан-Антуан Нолле, можно дискутировать. Но наличие воды в обоих сосудах (пузыре и бочке) неоспоримо. Разница состоит лишь в концентрации растворенного в ней спирта. Именно эта разница дала толчок диффузии воды через полупроницаемую мембрану из бочонка в пузырь. По тому, как раздулся пузырь, можно было понять, что явление это рождает весьма значительную однонаправленную силу, которую Нолле назвал осмотическим давлением. А осмос он определил как процесс диффузии растворителя из менее концентрированного раствора в более концентрированный.

В наши дни норвежская компания Statcraft, лидер европейского рынка экологически чистой энергетики, нашла способ превратить это давление в электричество. Новая технология — единственная, способная извлекать джоули из естественной разницы содержания минеральных солей в пресной и морской воде, а не из кинетической энергии их движения. По оценкам норвежцев, мировые ресурсы возобновляемой осмотической энергии составляют от 1,6 до 1,7 тераватт — примерно столько же в 2004 году потребовалось миллиардному Китаю! В отличие от капризного ветра, прибоя и солнца, процессы осмоса не останавливаются ни на секунду 24 часа в сутки круглый год.


Для работы осмотической электростанции не требуются специальные инженерные сооружения: печи, реакторы, плотины, градирни. Первая в мире электростанция на осмосе расположилась в пустующем складе деревоперерабатывающего завода.

Выпить море

Вообще-то явление осмоса используется в промышленных масштабах уже более 40 лет. Только это не классический прямой осмос аббата Нолле, а так называемый обратный осмос — искусственный процесс проникновения растворителя из концентрированного в разбавленный раствор под действием давления, превышающего естественное осмотическое давление. Такая технология применяется в опреснительных и очистительных установках с начала 1970-х. Соленая морская вода нагнетается на специальную мембрану и, проходя через ее поры, лишается значительной доли минеральных солей, а заодно бактерий и даже вирусов. Для прокачивания соленой или загрязненной воды приходится затрачивать большие объемы энергии, но игра стоит свеч — на планете существует множество регионов, где дефицит питьевой воды является острейшей проблемой.

Теоретические разработки в этой области появились еще в начале ХХ века, но для их реализации не хватало главного — подходящей осмотической мембраны. Такая мембрана должна была выдерживать давление, в 20 раз превышающее давление обычного бытового водопровода, и иметь чрезвычайно высокую пористость. Создание материалов с подобными свойствами стало возможным после Второй мировой, когда накопленный в ходе военных проектов научный потенциал дал толчок развитию технологий производства синтетических полимеров.


Трудно поверить, что одна лишь разница в концентрации двух растворов способна создать серьезную силу, однако это действительно так: осмотическое давление может поднять уровень морской воды на 120 м.

Наиболее значительный прорыв в этой области произошел в 1959 году. Сидней Лоэб и Шриниваса Суранджан из Калифорнийского университета в Лос-Анджелесе разработали спиральную анизотропную мембрану, способную выдерживать колоссальное давление, эффективно задерживать минеральные соли и механические частицы размером до 5 мкм и главное — обладающую высокой пропускной способностью при минимальных размерах. Изобретение Лоэба и Суранджана сделало осмотическое опреснение экономически выгодным бизнесом. В начале 1960-х в калифорнийской Коалинге Лоэб построил первую в мире опреснительную станцию на эффекте PRO (Pressure retarded osmosis), а затем перебрался в Израиль, где на средства ЮНЕСКО продолжил свои исследования. При участии Лоэба в 1967 году в местечке Йотвата была построена опреснительная установка мощностью 150 м³ в сутки, производившая чистую питьевую воду из подземного озера с соленостью, десятикратно превышавшей морскую. Еще через три года технология PRO была защищена американским патентом.

Осмос и космос

Мембранная лаборатория в Центре NASA им. Эймса уже много лет подряд занимается решением проблемы обеспечения обитателей космических станций питьевой водой. Ученые разработали технологию DOC, комбинирующую два разнонаправленных процесса — прямой и обратный осмос. При обратном осмосе мембрана работает как фильтр тонкой очистки и требует больших затрат энергии. Прямой осмос, наоборот, производит ее. Каждый из этих процессов по отдельности лишает водные растворы подавляющего количества примесей. В результате получается так называемая серая вода, которую можно использовать для гигиенических целей. Для того чтобы сделать из серой воды питьевую, раствор проходит этап мембранной очистки без дополнительного нагревания и далее очистку от бактерий и вирусов в подсистеме каталитического окисления. Балансовая энергоемкость DOC достаточно низка для применения в космосе.
Оригинальный способ очистки воды для космических станций представила американская компания Osmotek. Для сбора продуктов жизнедеятельности она предлагает использовать мембранные пакеты наподобие чайных с содержащимся в них активированным углем. Мембрана пропускает наружу лишь воду с незначительным количеством загрязнений. Этот первичный раствор затем попадает в мембранную камеру со специальным концентрированным субстратом в другой части. Возникающее явление прямого осмоса завершает процесс.
Компания Oasys обещает снизить расход энергии осмотических опреснительных установок ни много ни мало в десять раз. Правда, в данном случае речь идет не об обратном, а о прямом осмосе. И не простом, а модифицированном. Его суть заключается в наличии на ответной стороне обычной PRO-мембраны патентованного вытягивающего раствора с высоким содержанием аммиака, двуокиси углерода и других химикатов. При контакте двух растворов возникает явление осмоса и происходит очищение исходного сырья от примесей. Изюминка методики Oasys в том, что поток чистой пресной воды не смешивается с вытягивающим раствором.

Опыты по превращению осмотического давления в электрическую энергию с использованием мембран Лоэба-Суранджана проводились различными научными группами и компаниями с начала 1970-х. Принципиальная схема этого процесса была очевидной: поток пресной (речной) воды, проникающий сквозь поры мембраны, наращивает давление в резервуаре с морской водой, тем самым позволяя раскручивать турбину. Затем отработанная солоноватая вода выбрасывается в море. Проблема была лишь в том, что классические мембраны для PRO были слишком дороги, капризны и не обеспечивали необходимой мощности потока. С мертвой точки дело сдвинулось в конце 1980-х, когда за решение задачи взялись норвежские химики Торлейф Хольт и Тор Торсен из института SINTEF.


Космический размах

Мембраны Лоэба требовали клинической чистоты для поддержания максимальной производительности. Конструкция мембранного модуля опреснительной станции предусматривала обязательное наличие первичного фильтра грубой очистки и мощного насоса, сбивавшего мусор с рабочей поверхности мембраны.

Хольт и Торсен, проанализировав характеристики большинства перспективных материалов, остановили свой выбор на недорогом модифицированном полиэтилене. Их публикации в научных журналах привлекли внимание специалистов из Statcraft, и норвежских химиков пригласили продолжить работу под покровительством энергетической компании. В 2001 году мембранная программа Statcraft получила государственный грант. На полученные средства была построена экспериментальная осмотическая установка в Сунндальсьоре для тестирования образцов мембран и обкатки технологии в целом. Площадь активной поверхности в ней была чуть выше 200 м².


На схематичных изображениях осмотическую мембрану рисуют в виде стенки. На самом деле она представляет собой рулон, заключенный в цилиндрический корпус. В его многослойной структуре чередуются слои пресной и соленой воды. Поперечный разрез демонстрирует, как организованы потоки воды внутри осмотического цилиндра. Чем больше таких модулей установят на станции, тем больше энергии она сможет вырабатывать.

Для ускорения процесса в команду были приглашены инженеры из специализированной мембранной лаборатории NASA. Дело в том, что еще со времен подготовки к лунной программе Apollo при Центре NASA им. Эймса проводились глубокие исследования технологий опреснения и очистки водных растворов. Опыт американцев пришелся как нельзя кстати, и к 2008 году у Statcraft появились первые образцы спиральных полиимидных мебран для будущих осмотических электростанций. Их производительность составила 1 Вт на 1 м² при диффузии 10 л пресной воды в секунду под давлением 10 бар.

На станции в Тофте работают именно такие мембранные модули общей площадью 2000 м². Для выработки 4кВт этого вполне достаточно, но для полноценной 25-мегаваттной станции потребовалось бы аж 5 млн квадратов. Разумеется, мембраны для осмотических электростанций должны быть гораздо эффективнее нынешних. Стайн Эрик Скиллхаген, вице-президент Statcraft, курирующий программу, утверждает, что сейчас компания тестирует спиральные образцы из полых волокон производительностью 3 Вт/м2, а к 2015 году появятся плоские 5-ваттные мембраны. Кроме того, норвежцы внимательно изучают сторонние разработки в этой области и активно сотрудничают со специалистами из General Electric, Hydranautics, Dow и японской Toray.


В Голландии каждую секунду в соленое море низвергается 3300 кубометров речной воды. Ученые подсчитали, что ее суммарный энергетический потенциал составляет 4,5*10 9 Вт. Исследователи из KEMA также намерены выловить хотя бы часть энергии из этой бездонной бочки, но без лишней, по их мнению, механики. И такая возможность существует. Пока — в виде экспериментальной установки обратного электродиализа RED (reverse electrodialysis). В ней также используются морская и пресная вода, разделенные полупроницаемыми границами. Вот только мембран здесь две, и они выполняют роль электродов. Ведь RED — это батарея, работающая благодаря разнице в концентрациях ионов в двух средах. Эта разница и создает слабое напряжение на поверхности анодной и катодной мембран. Если из них собрать пакет, то вольтаж получится весьма ощутимым. Например, батарейка размером со стандартный морской контейнер выдает почти 250 кВт. KEMA с 2006 года эксплуатирует маленькую 50-киловаттную установку в Харлингене. На ней тестируются способы очистки и предотвращения загрязнения мембран биоматериалом. Клиническая чистота — критически важный фактор эффективной работы системы.

Кстати, мембрана для прямого осмоса — это не тонкая стенка, которую рисуют на упрощенных схемах, а длинный рулон, заключенный в цилиндрический корпус. Соединения с корпусом сделаны таким образом, что во всех слоях рулона с одной стороны мембраны всегда находится пресная вода, а с другой- морская.

Энергия глубин

Разница между соленостью (по-научному — градиент солености) пресной и морской воды — базовый принцип работы осмотической электростанции. Чем она больше, тем выше объем и скорость потока на мембране, а следовательно, и количество энергии, вырабатываемой гидротурбиной. В Тофте пресная вода самотеком поступает на мембрану, в результате осмоса давление морской воды по ту сторону резко возрастает. Силища у осмоса колоссальная — давление может поднять уровень морской воды на 120 м.


Далее полученная разбавленная морская вода устремляется через распределитель давления на лопатки турбины и, отдав им всю свою энергию, выбрасывается в море. Распределитель давления отбирает часть энергии потока, раскручивая насосы, закачивающие морскую воду. Таким образом удается значительно повысить эффективность работы станции. По оценке Рика Стовера, главного технолога компании Energy Recovery, производящей такие устройства для опреснительных заводов, КПД передачи энергии в распределителях приближается к 98%. Точно такие же аппараты при опреснении помогают доставлять питьевую воду в жилые дома.

Как замечает Скиллхаген, в идеале осмотические электростанции нужно совмещать с опреснительными установками — соленость остаточной морской воды в последних в 10 раз выше естественного уровня. В таком тандеме эффективность выработки энергии возрастет не менее чем вдвое.

Строительные работы в Тофте начались осенью 2008 года. На территории завода по производству целлюлозы компании Sódra Cell был арендован пустующий склад. На первом этаже устроили каскад сетчатых и кварцевых фильтров для очистки речной и морской воды, а на втором — машинный зал. В декабре того же года был осуществлен подъем и монтаж мембранных модулей и распределителя давления. В феврале 2009-го группа водолазов проложила по дну залива два параллельных трубопровода — для пресной и морской воды.


Забор морской воды осуществляется в Тофте с глубин от 35 до 50 м — в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от забивающих микропоры органических остатков.

С апреля 2009 года электростанция эксплуатировалась в пробном режиме, а в ноябре, с легкой руки принцессы Метте-Марит, была запущена на всю катушку. Скиллхаген уверяет, что вслед за Тофте у Statcraft появятся и другие аналогичные, но более совершенные проекты. И не только в Норвегии. По его словам, подземный комплекс размером с футбольное поле способен бесперебойно снабжать электричеством целый город с 15 000 индивидуальных домов. Причем, в отличие от ветряков, такая осмотическая установка практически бесшумна, не изменяет привычный ландшафт и не влияет на здоровье человека. А о пополнении запасов соленой и пресной воды в ней позаботится сама природа.