Определение уравнения линии, примеры линии на плоскости. Уравнение линии Связь между декартовыми и полярными координатами точки

Рассмотрим соотношение вида F(x, y)=0 , связывающее переменные величины x и у . Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у . Примеры уравнений: 2х + 3у = 0, х 2 + у 2 – 25 = 0,

sin x + sin y – 1 = 0.

Если (1) справедливо для всех пар чисел х и у, то оно называется тождеством . Примеры тождеств: (х + у) 2 - х 2 - 2ху - у 2 = 0, (х + у)(х - у) - х 2 + у 2 = 0.

Уравнение (1) будем называть уравнением множества точек (х; у), если этому уравнению удовлетворяют координаты х и у любой точки множества и не удовлетворяют координаты никакой точки, не принадлежащие этому множеству.

Важным понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия α.


Определение. Уравнение (1) называется уравнением линии α (в созданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии α , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Если (1) является уравнением линии α, то будем говорить, что уравнение (1) определяет (задает) линию α.

Линия α может определятся не только уравнением вида (1), но и уравнением вида

F (P, φ) = 0 , содержащим полярные координаты.

  • уравнение прямой с угловым коэффициентом;

Пусть дана некоторая прямая, не перпендикулярная, оси ОХ . Назовем углом наклона данной прямой к оси ОХ угол α , на который нужно повернуть ось ОХ , чтобы положительное направление совпало с одним из направлений прямой. Тангенс угла наклона прямой к оси ОХ называют угловым коэффициентом этой прямой и обозначают буквой К .

К=tg α
(1)

Выведем уравнение данной прямой, если известны ее К и величина в отрезке ОВ , которой она отсекает на оси ОУ .

(2)
y=kx+b
Обозначим через М " точку плоскости (х; у). Если провести прямые BN и NM , параллельные осям, то образуются r BNM – прямоугольный. Т. MC C BM <=>, когда величины NM и BN удовлетворяют условию: . Но NM=CM-CN=CM-OB=y-b, BN=x => учитывая (1), получаем, что точка М (х; у) С на данной прямой <=>, когда ее координаты удовлетворяют уравнению: =>

Уравнение (2) называют уравнением прямой с угловым коэффициентом. Если K=0 , то прямая параллельна оси ОХ и ее уравнение имеет вид y = b.

  • уравнение прямой, проходящей через две точки;
(4)
Пусть даны две точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Приняв в (3) точку М (х; у) за М 2 (х 2 ; у 2), получим у 2 -у 1 =k(х 2 - х 1). Определяя k из последнего равенства и подставляя его в уравнение (3), получаем искомое уравнение прямой: . Это уравнение, если у 1 ≠ у 2 , можно записать в виде:

Если у 1 = у 2 , то уравнение искомой прямой имеет вид у = у 1 . В этом случае прямая параллельна оси ОХ . Если х 1 = х 2 , то прямая, проходящая через точки М 1 и М 2 , параллельна оси ОУ , ее уравнение имеет вид х = х 1 .

  • уравнение прямой, проходящей через заданную точку с данным угловым коэффициентом;
(3)
Аx + Вy + С = 0
Теорема. В прямоугольной системе координат Оху любая прямая задается уравнением первой степени:

и, обратно, уравнение (5) при произвольных коэффициентах А, В, С (А и В ≠ 0 одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство.

Сначала докажем первое утверждение. Если прямая не перпендикулярна Ох, то она определяется уравнением первой степени: у = kx + b , т.е. уравнением вида (5), где

A = k, B = -1 и C = b. Если прямая перпендикулярна Ох, то все ее точки имеют одинаковые абсциссы, равные величине α отрезка, отсекаемого прямой на оси Ох.

Уравнение этой прямой имеет вид х = α, т.е. также является уравнение первой степени вида (5), где А = 1, В = 0, С = - α. Тем самым доказано первое утверждение.

Докажем обратное утверждение. Пусть дано уравнение (5), причем хотя бы один из коэффициентов А и В ≠ 0 .

Если В ≠ 0 , то (5) можно записать в виде . Пологая , получаем уравнение у = kx + b , т.е. уравнение вида (2) которое определяет прямую.

Если В = 0 , то А ≠ 0 и (5) принимает вид . Обозначая через α, получаем

х = α , т.е. уравнение прямой перпендикулярное Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка.

Уравнение вида Ах + Ву + С = 0 является неполным, т.е. какой – то из коэффициентов равен нулю.

1) С = 0; Ах + Ву = 0 и определяет прямую, проходящую через начало координат.

2) В = 0 (А ≠ 0) ; уравнение Ах + С = 0 Оу.

3) А = 0 (В ≠ 0) ; Ву + С = 0 и определяет прямую параллельную Ох.

Уравнение (6) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения удобна для геометрического построения прямой.

  • нормальное уравнение прямой;

Аx + Вy + С = 0 – общее уравнение некоторой прямой, а (5) x cos α + y sin α – p = 0 (7)

ее нормальное уравнение.

Так как уравнение (5) и (7) определяют одну и ту же прямую, то (А 1х + В 1у + С 1 = 0 и

А 2х + В 2у + С 2 = 0 => ) коэффициенты этих уравнений пропорциональны. Это означает, что помножив все члены уравнения (5) на некоторый множитель М, мы получим уравнение МА х + МВ у + МС = 0 , совпадающее с уравнением (7) т.е.

МА = cos α, MB = sin α, MC = - P (8)

Чтобы найти множитель М, возведем первые два из этих равенств в квадрат и сложим:

М 2 (А 2 + В 2) = cos 2 α + sin 2 α = 1

Уравнением линии на плоскости XOY называется уравнение, которому удовлетворяют координаты x и y каждой точки этой линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. В общем случае уравнение линии может быть записано в виде 0), (yx. F или)(xfy

Пусть задана прямая, пересекающая ось у в точке В (0, в) и образующая с осью х угол α Выберем на прямой произвольную точку М(х, у).

x y M N

Координаты точки N (x , в). Из треугольника BMN: k – угловой коэффициент прямой. k x by NB MN tg bkxy

Рассмотрим частные случаи: — уравнение прямой, проходящей через начало координат. 10 bkxy 2 bytg 00 — уравнение прямой, параллельной оси х.

т. е. у вертикальной прямой нет углового коэффициента. 3 22 tg — не существует Уравнение прямой, параллельной оси у, в этом случае имеет вид ax где а – отрезок, отсекаемый прямой на оси х.

Пусть задана прямая, проходящая через заданную точку2 и образующая с осью х угол α), (111 yx. M

Т. к. точка М 1 лежит на прямой, ее координаты должны удовлетворять уравнению (1): Вычитаем это уравнение из уравнения (1): bkxy 11)(11 xxkyy

Если в этом уравнении угловой коэффициент не определен, то оно задает пучок прямых, проходящих через данную точку, кроме прямой, параллельной оси у, не имеющей углового коэффициента. xy

Пусть задана прямая, проходящая через две точки: Запишем уравнение пучка прямых, проходящих через точку М 1:), (111 yx. M), (222 yx. M)(11 xxkyy

Т. к. точка М 2 лежит на данной прямой, подставим ее координаты в уравнение пучка прямых:)(1212 xxkyy 12 12 xx yy k Подставляем k в уравнение пучка прямых. Тем самым мы выделяем из этого пучка прямую, проходящую через две данные точки:

1 12 12 1 xx xx yy yy или 12 1 xx xx yy yy

РЕШЕНИЕ. Подставляем координаты точек в уравнение прямой, проходящей через две точки. 53 5 42 4 xy)5(8 6 4 xy 4 1 4 3 xy

Пусть задана прямая, отсекающая на осях координат отрезки, равные а и в. Это значит, что она проходит через точки)0, (a. A), 0(b. B Найдем уравнение этой прямой.

xy 0 ab

Подставим координаты точек А и В в уравнение прямой, проходящей через две точки (3): a ax b y 00 0 a ax b y 1 ax b y 1 b y a x

ПРИМЕР. Составить уравнение прямой, проходящей через точку А(2, -1) если она отсекает от положительной полуоси у отрезок, вдвое больший, чем на положительной полуоси х.

РЕШЕНИЕ. По условию задачи, ab 2 Подставляем в уравнение (4): 1 2 a y a x Точка А(2, -1) лежит на этой прямой, следовательно ее координаты удовлетворяют этому уравнению: 1 2 12 aa 1 2 41 a 23 a 1 35. 1 yx

Рассмотрим уравнение: Рассмотрим частные случаи этого уравнения и покажем, что при любых значениях коэффициентов А, В (не равных нулю одновременно) и С, это уравнение есть уравнение прямой на плоскости. 0 CBy. Ax

Тогда уравнение (5) можно представить в виде: Тогда получаем уравнение (1): Обозначим: 10 B B C x B A y k B A b B C bkxy

Тогда уравнение имеет вид: Получаем уравнение: — уравнение прямой, проходящей через начало координат. 2000 CAB x B A y 3 000 CAB BC y — уравнение прямой, параллельной оси х.

Тогда уравнение имеет вид: Получаем уравнение: — уравнение оси х. 40 y 5 000 CAB — уравнение прямой, параллельной оси у. 000 CAB A C x

Тогда уравнение имеет вид: — уравнение оси у. 60 x 000 CAB Таким образом, при любых значениях коэффициентов А, В (не равных нулю одновременно) и С, уравнение (5) есть уравнение прямой на плоскости. Это

Пусть на плоскости  задана декартова прямоугольная система координат Оху и некоторая линия L.

Определение . Уравнение F(x;y)=0 (1) называется уравнением линии L (относительно заданной системы координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты х и у ни одной точки, не лежащей на линии L.

Т.о. линией на плоскости называется геометрическое место точек {M(x;y)}, координаты которых удовлетворяют уравнению (1).

Уравнение (1) определяет линию L.

Пример. Уравнение окружности.

Окружность – множество точек, равноудаленных от заданной точки М 0 (х 0 ,у 0).

Точка М 0 (х 0 ,у 0) – центр окружности .

Для любой точки М(х;у), лежащей на окружности, расстояние ММ 0 =R (R=const)

ММ 0 ==R

(х-х 0 ) 2 +(у-у 0 ) 2 =R 2 –(2) уравнение окружности радиуса R с центром в точке М 0 (х 0 ,у 0).

Параметрическое уравнение линии.

Пусть координаты х и у точек линии L выражаются при помощи параметра t:

(3) – параметрическое уравнение линии в ДСК

где функции (t) и (t) непрерывны по параметру t (в некоторой области изменения этого параметра).

Исключая из уравнения (3) параметр t, получим уравнение (1).

Рассмотрим линию L как путь, пройденный материальной точкой, непрерывно движущейся по определенному закону. Пусть переменная t представляет собой время, отсчитываемое от некоторого начального момента. Тогда задание закона движения представляет собой задание координат х и у движущейся точки как некоторых непрерывных функций х=(t) и у=(t) времени t.

Пример . Выведем параметрическое уравнение окружности радиуса r>0 с центром в начале координат. Пусть М(х,у) – произвольная точка этой окружности, а t – угол между радиус-вектором и осью Ох, отсчитываемый против часовой стрелки.

Тогда x=r cos x y=r sin t. (4)

Уравнения (4) представляют собой параметрические уравнения рассматриваемой окружности. Параметр t может принимать любые значения, но для того, чтобы точка М(х,у) один раз обошла окружность, область изменения параметра ограничивается полусегментом 0t2.

Возведя в квадрат и сложив уравнения (4), получим общее уравнение окружности (2).

2. Полярная система координат (пск).

Выберем на плоскости ось L (полярная ось ) и определим точку этой оси О (полюс ). Любая точка плоскости однозначно задается полярными координатами ρ и φ, где

ρ – полярный радиус , равный расстоянию от точки М до полюса О (ρ≥0);

φ –угол между направлением вектора ОМ и осью L (полярный угол ). М(ρ; φ)

Уравнение линии в ПСК может быть записано:

ρ=f(φ) (5) явное уравнение линии в ПСК

F=(ρ; φ) (6) неявное уравнение линии в ПСК

Связь между декартовыми и полярными координатами точки.

(х;у) (ρ; φ) Из треугольника ОМА:

tg φ=(восстановление угла φ по известному тангенсу производится с учетом того, в каком квадранте находится точка М).(ρ; φ)(х;у). х=ρcos φ, y= ρsin φ

Пример . Найти полярные координаты точек М(3;4) и Р(1;-1).

Для М:=5, φ=arctg (4/3). Для Р: ρ=; φ=Π+arctg(-1)=3Π/4.

Классификация плоских линий.

Определение 1. Линия называется алгебраической, если в некоторой декартовой прямоугольной системе координат, если она определяется уравнением F(x;y)=0 (1), в котором функция F(x;y) представляет собой алгебраический многочлен.

Определение 2. Всякая не алгебраическая линия называется трансцендентной .

Определение 3 . Алгебраическая линия называется линией порядка n , если в некоторой декартовой прямоугольной системе координат эта линия определяется уравнением (1), в котором функция F(x;y) представляет собой алгебраический многочлен n-й степени.

Т.о., линией n-го порядка называется линия, определяемая в некоторой декартовой прямоугольной системе алгебраическим уравнением степени n с двумя неизвестными.

Установлению корректности определений 1,2,3 способствует следующая теорема.

Теорема (док-во на с.107). Если линия в некоторой декартовой прямоугольной системе координат определяется алгебраическим уравнением степени n, то эта линия и в любой другой декартовой прямоугольной системе координат определяется алгебраическим уравнением той же степени n.

Равенство вида F(x, y) = 0 называется уравнением с двумя переменными x , у, если оно справедливо не для всяких пар чисел х, у. Говорят, что два числа x = x 0 , у=у 0, удовлетворяют некоторому уравнению вида F(х, у)=0, если при подстановке этих чисел вместо переменных х и у в уравнение его левая часть обращается в нуль.

Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты каждой точки, не лежащей на ней.

В дальнейшем вместо выражения «дано уравнение линии F(х, у) = 0» мы часто будем говорить короче: дана линия F (х, у) = 0.

Если даны уравнения двух линий F (х, у) = 0 и Ф(х, y) = Q, то совме­стное решение системы

даёт все точки их пересечения. Точнее, каждая пара чисел, являющаяся сов­местным решением этой системы, определяет одну из точек пересечения.

*) В тех случаях, когда система координат не названа, подразумевается, что она - декартова прямоугольная.

157. Даны точки *) M 1 (2; - 2), M 2 (2; 2), M 3 (2; - 1), M 4 (3; -3), M 5 (5; -5), M 6 (3; -2). Установить, какие изданных точек лежат на линии, определённой уравнением х + у = 0, и какие не лежат на ней. Какая линия определена данным уравнением? (Изобразить её на чертеже.)

158. На линии, определённой уравнением х 2 +y 2 =25, найти точки, абсциссы которых равны следующим числам: а) 0, б) - 3, в) 5, г) 7; на этой же линии найти точки, ординаты которых равны следующим числам: д) 3, е) - 5, ж) - 8. Какая линия определена данным уравнением? (Изобразить её на чертеже.)

159. Установить, какие линии определяются следующими уравне­ниями (построить их на чертеже):

1) х - у = 0; 2) х + у = 0; 3) x - 2 = 0; 4) x + 3 = 0;

5) у - 5 = 0; 6) y + 2 = 0; 7) x = 0; 8) y = 0;

9) x 2 - xy = 0; 10) xy + y 2 = 0; 11) x 2 - y 2 = 0; 12) xy = 0;

13) y 2 - 9 = 0; 14) xy 2 - 8 xy +15 = 0; 15) y 2 +5y+4 = 0;

16) х 2 у - 7ху + 10y = 0; 17) у = |x |; 18) х = |у |; 19) y + |x |=0;

20) х + |у |= 0; 21) у = |х- 1|; 22) y = |x + 2|; 23) х 2 + у 2 = 16;

24) (x -2) 2 +(y -1) 2 =16; 25) (x + 5) 2 +(y - 1) 2 = 9;

26) (х - 1) 2 + y 2 = 4; 27) x 2 +(y + 3) 2 = 1; 28) (x -3) 2 + y 2 = 0;

29) х 2 + 2y 2 = 0; 30) 2 х 2 + 3y 2 + 5 = 0

31) (x - 2) 2 + (y + 3) 2 + 1=0.

160.Даны линии:

1) х + у = 0; 2) х - у = 0; 3) x 2 + y 2 - 36 = 0;

4) x 2 +y 2 -2x ==0; 5) x 2 +y 2 + 4x -6y -1 =0.

Определить, какие из них проходят через начало координат.

161.Даны линии:

1) x 2 + y 2 = 49; 2) (x - 3) 2 + (y + 4) 2 = 25;

3) (x + 6) 2 + (y - 3) 2 = 25; 4) (x + 5) 2 + (y - 4) 2 = 9;

5) x 2 + y 2 - 12х + 16у = 0; 6) x 2 + y 2 - 2х + 8у + 7 = 0;

7) x 2 + y 2 - 6х + 4у + 12 = 0.

Найти точки их пересечения: а) с осью Ох; б) с осью Оу.

162.Найти точки пересечения двух линий;

1) х 2 2 = 8, х-у = 0;

2) х 2 2 -16x +4у +18 = 0, х + у = 0;

3) х 2 2 -2x +4у -3 = 0, х 2 + у 2 = 25;

4) х 2 2 -8x +10у+40 = 0, х 2 + у 2 = 4.

163. В полярной системе координат даны точки

М 1 (1; ), М 2 (2; 0), М 3 (2; )

М 4 (
;) и М 5 (1; )

Установить, какие из этих точек лежат на линии, определённой уравнением в полярных координатах  = 2 cos , и какие не лежат на ней. Какая линия определяется данным уравнением? (Изобразить её на чертеже:)

164. На линии, определённой уравнением  = , найти точки, полярные углы которых равны следующим числам: а) ,б) -, в) 0,г) . Какая линия определена данным уравнением?

(Построить её на чертеже.)

165.На линии, определённой уравнением  = , найти точки,полярные радиусы которых равны следующим числам: а) 1, б) 2,в)
. Какая линия определена данным уравнением? (Построить её на чертеже.)

166.Установить, какие линии определяются в полярных коор­динатах следующими уравнениями (построить их на чертеже):

1)  = 5; 2)  = ; 3)  = ; 4)  cos  = 2; 5)  sin  = 1;

6)  = 6 cos ; 7)  = 10 sin ; 8) sin  = 9) sin  =

167.Построить на чертеже следующие спирали Архимеда:

1)  = 5, 2)  = 5; 3)  = ; 4)р = -1.

168. Построить на чертеже следующие гиперболические спирали:

1)  = ; 2) = ; 3) = ; 4) = -.

169. Построить на чертеже следующие логарифмические спирали:

,
.

170.Определить длины отрезков, на которые рассекает спиральАрхимеда

луч, выходящий из полюса и наклонённый к полярной оси под углом
. Сделать чертёж.

171. На спирали Архимеда
взята точка С, полярный радиус которой равен 47. Определить, на сколько частей эта спираль рассекает полярный радиус точки С, Сделать чертёж.

172. На гиперболической спирали
найти точку Р, полярный радиус которой равен 12. Сделать чертёж.

173. На логарифмической спирали
найти точку Q, полярный радиус которой равен 81. Сделать чертёж.


Если указано правило, согласно которому с каждой точкой М плоскости (или какой-нибудь части плоскости) сопоставляется некоторое число u, то говорят, что на плоскости (или на части плоскости) «задана функция точки»; задание функции символически выражается равенством вида u=f(M). Число u, сопоставляемое с точкой М, называется значением данной функции в точке М. Например, если А - фиксированная точка плоскости, М - произвольная точка, то расстояние от А до М есть функция точки М. В данном случае f(m)=AM.

Пусть дана некоторая функция u=f(M) и вместе с тем введена система координат. Тогда произвольная точка М определяется координатами x, y. Соответственно этому и значение данной функции в точке М определяется координатами x, y, или, как еще говорят, u=f(M) есть функция двух переменных x и y . Функция двух переменных x и y обозначается символом f(x; y): если f(M)=f(x;y), то формула u=f(x; y) называется выражением данной функции в выбранной системе координат. Так, в предыдущем примере f(M)=AM; если ввести декартову прямоугольную систему координат с началом в точке А, то получим выражение этой функции:

u=sqrt(x^2 + y^2)

ЗАДАЧА 3688 Дана функция f (x, y)=x^2–y^2–16.

Дана функция f (x, y)=x^2–y^2–16. Определить выражение этой функции в новой системе координат, если координатные оси повернуты на угол –45 градусов.

Параметрические уравнения линии


Обозначим буквами х и у координаты некоторой точки М; рассмотрим две функции аргумента t:

x=φ(t), y=ψ(t) (1)

При изменении t величины х и у будут, вообще говоря, меняться, следовательно, точка М будет перемещаться. Равенства (1) называются параметрическими уравнениями линии , которая является траекторией точки М; аргумент t носит название параметра. Если из равенств (1) можно исключить параметр t, то получим уравнение траектории точки М в виде