Микоплазмы биологические свойства особенности строения микробиология. Морфология и структура микоплазм, риккетсий, хламидий, октиномицетов, микроскопических грибов. Структура бактериальной клетки

Занятие № 4 «__»__________2006 г.

Тема: Морфология актиномицет, микоплазм, риккетсий, хламидий и грибов

План занятия

1. Актиномицеты: методы микроскопического изучения, морфология чистой культуры и строение друз.

2. Морфология и ультраструктура риккетсий.

3. Хламидии: выявление хламидий по Романовскому-Гимзе.

4. Изучение морфологии и структуры микоплазм и L-форм в фазовом контрасте.

5. Классификация и морфологические особенности грибов: отличительные особенности Mucor, Aspergillus, Penicillium, Saccharomyces, Candida. Методы изучения морфологии грибов в нативном и окрашенном состоянии.

6. Методы выделения чистых культур бактерий: техника посева смеси культур на плотные питательные среды.

Методические указания к выполнению практических заданий

1. Актиномицеты – грамположительные ветвящиеся нити, напоминающие мицелий грибов или имеющие вид полиморфных палочек в результате фрагментации этих нитей. Актиномицеты – прокариоты и не являются гибами (эукариоты). Менее высокоорганизованные актиномицеты, к которым относятся возбудители актиномикоза, размножаются фрагментами гифов, более высокоорганизованные – спорами.


Метод Здродовского – облегченная модификация метода Циля-Нильсена, основан на выявлении кислотоустойчивости риккетсий.

Фиксированный на пламени препарат-мазок окрашивают разведенным карболовым фуксином (без нагревания), промывают водой, обесцвечивают слабым раствором органической (например, 0,5% лимонной, 0,15% уксусной) или минеральной кислоты (0,01% соляной), после промывания докрашивают метиленовым синим и промывают водой. Риккетсии окрашиваются в рубиново-красный цвет и при внутриклеточном расположении хорошо видны на голубом фоне цитоплазмы, ядро клетки имеет синий цвет.

4. Микоплазмы – прокариотные полиморфные микроорганизмы, лишенные клеточной стенки. Они могут расти на специальных питательных средах. В культуре микоплазм можно одновременно обнаружить крупные шаровидные тела (до 10 мкм), мелкие зерна (0,1-0,2 мкм), палочковидные и нитевидные клетки и др. Микоплазмы размножаются бинарным делением, фрагментацией крупных тел и нитей с образованием мелких зерен, почкованием. Колонии микоплазм на питательной среде имеют компактный центр и полупрозрачные края («яичница глазунья»). Морфологически близки микоплазмам так называемые L - формы бактерий (стабильные и нестабильные), почти или полностью утратившие клеточную стенку. L-формы образуются под действием антибиотиков (например, пенициллина, цефалоспорина). В связи с хрупкостью микоплазм и L-форм их морфологию изучают в нативном состоянии методом фазово-контрастной микроскопии.

5. Грибы – бесхлорофильные, гетеротрофные, эукариотические организмы, близкие низшим растениям, выделенные в царство грибов – MYCOTA. Различают макроскопические (шляпные) грибы и микроскопические, среди последних встречаются сапрофитные и патогенные представители. Истинные грибы – Eumycota – подразделяют на семь классов, большинство патогенных грибов относится к классу Deuteromycetes. Тело гриба – грибница – состоит из тонких нитей гифов, образующих мицелий : субстратный (вегетативный) и воздушный (продуктивный). У низших грибов мицелий несептирован (одноклеточный), у высших разделен перегородками (многоклеточный). Встречаются грибы, не образующие мицелий (дрожжи – Saccharomyces), а также образующие псевдомицелий (дрожжеподобные – Candida). Строение клетки грибов типично для эукариотов: в цитоплазме находится истинное ядро с ядрышком, множество других органелл (рибосомы, митохондрии, лизосомы, мезосомы, эндоплазмотический ретикулум, пластинчатый комплекс, липосомы, фагосомы, а также вакуоли). Протопласт одет цитоплазматической мембраной и плотной клеточной стенкой, в состав которой входят хитин, целлюлоза, глюканы, глюконуровая кислота, различные углеводы, липиды, белки, аминокислоты, пигменты. Грибы размножаются спорами, образующимися как бесполым, так и половым путем или только бесполым (у дейтеромицет), а также почкованием и фрагментацией.

Микоплазмы. Таксономия. Характеристика. Микроби­ологическая диагностика. Лечение.

Антропонозные бактериальные инфекции человека, поражающие органы дыхания или мочеполовой тракт.

Микоплазмы относятся к клас­су Mollicutes, который включает 3 порядка: Acholeplasmatales, Mycoplasmatales, Anaeroplasmatales.

Морфология: Отсутствие ригидной клеточной стен­ки, полиморфизм клеток, пластичность, осмотическую чувс­твительность, резистентность к различным агентам, подавляющим синтез клеточной стенки, в том числе к пенициллину и его производным. Грам «-», луч­ше окрашиваются по Романовскому-Гимзе; различают подвижные и неподвижные виды. Клеточная мембрана находится в жидкокристаллическом состоянии; включает белки, погруженные в два липидных слоя, основной компонент которых - холестерин.

Культуральные свойства . Хемоорганотрофы, основной источник энергии - глюкоза или аргинин. Растут при температуре 30С. Большинство видов - факультативные анаэ­робы; чрезвычайно требовательны к пита­тельным средам и условиям культивирования. Питательные среды (экстракт говяжьего сердца, дрожжевой экстракт, пептон, ДНК, глюко­за, аргинин).

Культивируют на жидких, полужидких и плотных питательных средах.

Биохимическая активность : Низкая. Выделяют 2 группы микоплазм: 1. разлагающие с образованием кислоты глюкозу, мальтозу, маннозу, фруктозу, крахмал и гликоген; 2.окисляющие глутамат и лактат, но не ферментирующие углеводы. Все виды не гидролизуют мочевину.

Антигенная структура: Сложная, имеет ви­довые различия; основные АГ представлены фосфо- и гликолипидами, полисахаридами и белками; наиболее иммунногенны поверх­ностные АГ, включающие углеводы в составе сложных гликолипидных, липогликановых и гликопротеиновых комплексов.

Факторы патогенности: адгезины, токсины, ферменты агрессии и продукты метаболизма. Адгезины входят в состав поверхностных АГ и обуславливают ад­гезию на клетках хозяина. Предполагают наличие нейротоксина у неко­торых штаммов М. pneumoniae, так как часто инфекции дыхательных путей сопровождают поражения нервной системы. Эндотоксины выделены у многих патогенных микоплазм. У некоторых видов встречаются гемолизины. Среди ферментов агрес­сии основными факторами патогенности явля­ются фосфолипаза А и аминопептидазы, гидролизующие фосфолипиды мембраны клетки. Протеазы, вызывающие дегрануляцию клеток, в том числе и тучных, расщепле­ние молекул AT и незаменимых аминокислот.

Эпидемиология : М. pneumoniae колонизирует слизистую оболочку респираторного тракта; M. hominis, M. genitalium uU. urealyticum - «урогенитальные микоплазмы» - обитают в урогенитальном тракте.



Источник инфекции - больной человек. Механизм передачи - аэрогенный, основной путь передачи - воздушно-капельный.

Патогенез: Проникают в организм, мигрируют через слизистые оболочки, прикрепляются к эпителию через гликопротеиновые рецепторы. Микробы не проявляют выраженного цитопатогенного действия, но вызывают нарушения свойств клеток с развитием местных воспалительных реакций.

Клиника : Респираторный микоплазмоз - в форме инфекции верхних дыха­тельных путей, бронхита, пневмонии. Внереспираторные проявления: ге­молитическая анемия, неврологические расстройства, осложнения со стороны ССС.

Иммунитет : для респираторного и урогенитального микоплазмоза характерны случаи повторного заражения.

Микробиологическая диагностика: мазки из носоглотки, мокрота, бронхиальные смывы. При урогенитальных инфекциях исследуют мочу, соскобы с уретры, влагалища.

Для лабораторной диагностики микоплазменных инфекций используют культуральный, серологический и молекулярно-генетический методы.

При серодиагностике материалом для иссле­дования служат мазки-отпечатки тканей, со­скобы из уретры, влагалиша, в которых можно обнаружить АГ микоплазм в прямой и непрямой РИФ. Микоплазмы и уреаплазмы выяв­ляются в виде зеленых гранул.

АГ микоплазм могут быть обнаружены так­же в сыворотке крови больных. Для этого ис­пользуют ИФА.

Для серодиагностики респираторного микоплазмоза определяют специфические AT в парных сыворотках больного. При урогенитальных микоплазмозах в ряде случаев проводят серодиагностику, AT определяют чаше всего в РПГА и ИФА.

Лечение. Антибиотики. Этиотропная химиотерапия.

Профилактика. Неспецифическая.

Возбудитель хламидиозов. Таксономия. Характеристи­ка. Микробиологическая диагностика. Лечение.



Таксономия: порядок Chlamydiales, семейство Chlamydaceae, род Chlamydia. Род представлен видами С.trachomatis, C.psittaci,C.pneumoniae.

Болезни, вызываемые хламидиями, называют хламидиозами . Заболевания, вызываемые C. trachomatis uC. pneumoniae, - антропонозы. Орнитоз, возбудителем которого являет­ся С. psittaci, - зооантропонозная инфекция.

Морфология хламидий : мелкие, грам «-» бактерии, шаровидной формы. Не образуют спор, нет жгутиков и капсулы. Клеточная стенка: 2-х слойная мембрана. Имеют гликолипиды. По Граму – красный цвет. Основной метод окраски – по Романовскому – Гимзе.

2 формы существования: элементарные тельца (неактивные инфекционные частицы, вне клетки); ретикулярные тельца (внутри клеток, вегетативная форма).

Культивирование: Можно размножать только в живых клетках. В желточном мешке развивающихся куриных эмбрионов, организ­ме чувствительных животных и в культуре кле­ток

Ферментативная активность : небольшая. Ферментируют пировиноградную кис­лоту, синтезируют липиды. Не способны синтезировать высокоэнергетические соединения.

Антигенная структура : Ан­тигены трех типов: родоспецифический термостабильный липополисахарид (в клеточной стенке). Выявля­ют с помощью РСК; видоспецифический антиген белковой природы (в наружной мембране). Обнаруживают с помощью РИФ; вариантоспецифический антиген белко­вой природы.

Факторы патогенности. С белками наружной мембраны хламидий связаны их адгезивные свойства. Эти адгезины обнаруживают только у элементарных телец. Хламидии образуют эндотоксин. У некоторых хламидий обна­ружен белок теплового шока, способный вызывать аутоиммунные реакции.

Резистентность . Высокаяк различным факторам внешней среды. Устойчивы к низким температурам, высушиванию. Чувствительны к нагреванию.

С. trachomatis - возбудитель забо­леваний мочеполовой системы, глаз и респи­раторного тракта человека.

Трахома - хроническое инфекционное заболевание, характеризующееся пораже­нием конъюнктивы и роговицы глаз. Антропоноз. Передается контактно- бытовым путем.

Патогенез: поражает сли­зистую оболочку глаз. Он проникает в эпителий конъюнктивы и роговицы, где размножается, разрушая клетки. Развивается фолликулярный кератоконъюнктивит.

Диагностика: исследование соскоба с конъюнкти­вы. В пораженных клетках при окраске по Романовскому-Гимзе обнаруживают цитоплазматические включения фиолетового цвета, расположенные около ядра - тельца Провачека. Для выявления специфического хламидийного антигена в пораженных клетках применяют также РИФ и ИФА. Иногда при­бегают к культивированию хламидий трахомы на куриных эмбрионах или культуре клеток.

Лечение: антибиотики (тетра­циклин) и иммуностимуляторы (интерферон).

Профилактика: Неспецифическая.

Урогенитальный хламидиоз - заболевание, передающееся половым путем. Это - острое/хро­ническое инфекционное заболевание, ко­торое характеризуется преимущественным поражением мочеполового тракта.

Заражение че­ловека происходит через слизистые оболочки половых путей. Основной механизм зараже­ния - контактный, путь передачи - по­ловой.

Иммунитет : клеточный, с сыворотке инфицированных – специфические антитела. После перенесенного заболевания - не формируется.

Диагностика : При забо­леваниях глаз применяют бактериоскопический метод - в соскобах с эпителия конъюнктивы выявляют внутриклеточные включения. Для выявления антигена хламидии в пора­женных клетках применяют РИФ. При поражении мочеполового тракта может быть применен биологический метод, основанный на заражении ис­следуемым материалом (соскобы эпителия из уретры, влагалища) культуры клеток.

Постановка РИФ, ИФА позволяют обнаружить антигены хламидии в исследуемом материале. Серологический метод - для обнаружения IgM против С. trachomatis при диагностике пневмонии новорожденных.

Лечение. антибиоти­ки (азитромицин из группы макролидов), иммуномодуляторы, эубиотики.

Профилактика . Только неспецифическая (лечение больных), соблюдение личной гигиены.

Венерическая лимфогранулема - заболева­ние, передающееся половым путем, характеризуется поражением половых орга­нов и регионарных лимфоузлов. Механизм заражения - контакт­ный, путь передачи - половой.

Иммунитет: стойкий, клеточный и гуморальный иммунитет.

Диагностика: Материал для исследования - гной, биоптат из пораженных лимфоузлов, сыворот­ка крови. Бактериоскопический метод, биологический (культивирование в желточном мешке куриного эмбриона), серологический (РСК с парными сыворотками положительна) и аллергологический (внутрикожная проба с аллергеном хламидии) методы.

Лечение .Антибиотики - макролиды и тетрациклины.

Профилактика : Неспецифическая.

С. pneumoniae - возбудитель респира­торного хламидиоза, вызывает острые и хронические бронхиты и пневмонии. Антропоноз. Заражение – воздушно-капельным путем. Попадают в легкие через верхние дыхательные пути. Вызывают воспаление.

Диагностика: постановка РСК для обнаружения специ­фических антител (серологический метод). При первичном заражении учитывают обнаружение IgM. Применяют также РИФ для обнаружения хламидийного антигена и ПЦР.

Лечение: Проводят с помощью антибиоти­ков (тетрациклины и макролиды).

Профилактика :Неспецифическая.

С. psittaci - возбудитель орнитоза - острого инфекционного заболевания, которое характеризуется пора­жением легких, нервной системы и паренхиматозных органов (печени, селе­зенки) и интоксикацией.

Зооантропоноз. Источники инфекции – птицы. Механизм заражения – аэрогенный, путь передачи – воздушно- капельный. Возбудитель – через слиз. оболочки дыхат. путей, в эпителий бронхов, альвеол, размножается, воспаление.

Диагностика: Материа­л для исследования - кровь, мокрота больного, сыворотка крови для серологического исследования.

Применяют биологический метод - куль­тивирование хламидий в желточном мешке куриного эмбриона, в культуре клеток. Серологический метод. Применяют РСК, РПГА, ИФА, ис­пользуя парные сыворотки крови больного. Внутрикожная аллергическая проба с орнитином.

Лечение : антибиотики (тетрациклины, макролиды).

Возбудитель сыпного тифа. Таксономия. Характеристи­ка. Болезнь Брилла-Цинссера. Микробиологическая диагно­стика. Специфическая профилактика и лечение.

Эпидемический сыпной тиф - острый антропоноз с трансмиссивным механизмом распространения платяными вшами. Клинически характеризуется лихорадкой, тяжелым течени­ем в связи с поражением кровеносных капил­ляров с нарушением кровоснабжения жизнен­но важных органов (мозг, сердце, почки), появ­лением сыпи.

Эпидемиология и механизм заражения . Заражение реализуется либо втиранием фе­калий инфицированных вшей через расчесы кожи, либо путем вдыхания пылевидного аэ­розоля из высохших инфицированных рикке­тсиями фекалий.

Клиника, диагноз, лечение. Инкубационный период 10 дней. Начало заболевания острое, клиничес­кие проявления обусловлены генерализован­ным поражением системы эндотелиальных клеток кровеносных сосудов, что приводит к наруше­нию каскада тромбо-антитромбообразования. Морфологическую основу болезни составля­ет генерализованный васкулит с формированием сыпи на кож­ных покровах. Болезнь протекает с высокой температурой, симптомами пора­жения сердечно-сосудистой и нервной сис­тем. Иммунитет - непродолжительный, клеточно-гуморальный.

Диагностика: осуществляется по клинико-эпидемиологическим данным, под­крепляется лабораторным исследованием на специфические антитела (РСК, РНГА, ИФА и др.).

Лечение : Быстрое этиотропное лечение одно­кратным приемом доксициклина, при его отсутствии - препаратами тетрациклинового ряда.

Профилактика. Изоляция завшивлен­ных больных, дезинфекция препаратами, содержащими перметрин. Для специфической профилактики разработана живая вакцина из штамма Е, которая приме­няется в комбинации с растворимым антиге­ном риккетсии Провачека (живая комбини­рованная сыпнотифозная вакцина из штамма), а также инактивированная вакцина из растворимого антигена.

Болезнь Бриля рецидив после ранее перенесенного эпидемического сыпного тифа.

Возбудитель- R. prowazekii.

Клинически протекает как эпидемический тиф легкой и средней тяжести.

Патоморфология инфек­ционного процесса та же, что и при эпидеми­ческой форме. Различие заключается в эпи­демиологии (нет переносчика, отсутствует се­зонность проявления, источник и реализация способа заражения) и патогенезе начальной стадии болезни. Она возникает вследствие ак­тивации латентно «дремлющих» риккетсий.

Микробиологическая диагностика . Затруд­нена неопределенностью симптоматики на первой неделе заболевания (до появления сыпи) и ее сходством с симптомами при ин­фекциях, чаще брюшнотифозной. Диагноз устанавливается на основании клинико-эпидемиологических данных с учетом анамнеза больного и подкрепляется серологическим исследованием со специфическим антигеном. При отсутствии переносчика в очаге лечение может осуществляться без изоляции больно­го, в зависимости от его состояния. Прогноз благоприятен даже в отсутствии лечения ан­тибиотиками.

Профилактика . Меры профилакти­ки те же, что и при эпидемической форме. Специфическая профилактика невозможна.

Систематическое положение микоплазм

МИКОПЛАЗМЫ

Систематическое положение хламидий представлено в табл. 16.

Таблица 16

Микоплазмы - самые мелкие прокариоты из известных свободноживущих организмов. Предполагают, что микоплазмы произошли в результате мутации, нарушившей синтез веществ КС, от обычных бактериальных форм аналогично тому, как в экспериментальных условиях получают генетически стабильные L–формы. Микоплазмы отличаются от бактерий отсутствием КС, а от вирусов - ростом в бесклеточных средах.

Микоплазмы не образуют спор, жгутиков, окружены капсулоподобным слоем, некоторые виды (M. pneumoniae) обладают скользящей подвижностью.

Микоплазмы способны самостоятельно размножаться, способы размножения: бинарное деление и фрагментация нитевидных форм (почкование).

Энергию микоплазмы получают обычным для факультативных анаэробов способом, ферментируя углеводы или аминокислоты. М. hominis отличается от U. urealyticum морфологией колоний, метаболизмом и чувствительностью к антибиотикам. Микоплазма - аэробный микроорганизм, превращающий аргинин в орнитин с освобождением аммиака. Уреаплазма - микроаэрофильный организм, превращающий мочевину в аммиак.

Отличия микоплазм от других прокариот:

1) главная особенность микоплазм - отсутствие КС (рис. 54); следствием чего являются:

а) полиморфизм, среди микоплазм встречаются:

– мелкие сферические или овоидные клетки размером 0,15–0,35 мкм, которые проходят через бактериальные фильтры;

– более крупные шаровидные, диаметром до 1,5 мкм;

– нитевидные, ветвящиеся клетки длиной до 150 мкм.

б) окрашивание по типу Грам-;

в) первичная резистентность к b лактамным антибиотикам (пенициллинам и цефалоспоринам);

г) высокая чувствительность к механическим, физическим (изменения осмотического давления, рН среды, повышение температуры, действие УФО), и химическим (действие дезинфектантов) факторам; во внешней среде микоплазмы быстро погибают, поэтому экзогенное заражение микоплазмами происходит при близком и длительном контакте воздушно-капельным или половым путем; уреаплазмами - при половом контакте; возможны эндогенные инфекции, вызванные УП возбудителями;



д) рост только в изотонических и гипертонических сложных средах;

2) трехслойная ЦПМ толщиной 7,5–10 нм, содержащая в значительном количестве холестерин, стабилизирующий мембрану микоплазм; сами микоплазмы неспособны к синтезу стеринов и для роста нуждаются в них;

3) минимальное количество органелл (нуклеоид и рибосомы);

4) малый размер генома, наименьший у прокариотов (1/16 генома E. coli , 1/10 генома риккетсий);

5) вследствие малого генома микоплазмы обладают ограниченными биосинтетическими способностями, и их приходится длительно культивировать на сложных бесклеточных питательных средах, обогащенных липидами, белками, предшественниками нуклеиновых кислот;

А - электронная микроскопия, Б - рисунок


7) антигенная мимикрия: микоплазмы имеют общие антигены с антигенами клеток хозяина либо включают их в свою мембрану в результате межклеточных взаимодействий; следствием этого является развитие иммунопатологических процессов.

Введение.

Микоплазмы относятся к клас­су Mollicutes , который включает 3 порядка (рис. 16.2):Acholeplasmatales ,Mycoplasmatales ,Anaeroplasmatales . ПорядокAcholeplasmatalesвключает семейство Acholeplasmataceae с единственным родом Acholeplasma . ПорядокMycoplasmatalesсостоит из 2 семейств:Spiroplasmataceae с единственным родом Spiroplasma и Mycoplasmataceae , включающе­го 2 рода:Mycoplasma и Ureaplasma . Недавно выделенный порядокAnaeroplasmatalesсо­стоит из семейства Anaeroplasmataceae , вклю­чающего 3 рода:Anaeroplasma ,Asteroplasma ,Termoplasma . Термином «микоплазмы», как правило, обозначают все микробы семейств Mycoplasmataceae иAcholeplasmataceae.

Морфология микоплазм.

Отличительной особенностью является отсутствиеригидной клеточной стен­ки и ее предшественников, что обуславливает ряд биологических свойств: полиморфизм клеток, пластичность, осмотическую чувс­твительность, способность проходить через поры с диаметром 0,22 мкм. Они не способны синтезировать предшественников пептидогликана (мураминовую и диаминопимелиновую кислоты) и окружены лишь тонкой трехслойной мембраной толщиной 7,5-10,0 нм. Поэтому их выделили в особый отдел Tenericutes, класс Mollicutes («нежная кожа»), порядок Mycoplasmatales. Последний включает ряд семейств, в том числе Mycoplasmataceae. К этому семейству относятся патогенные микоплазмы (вызывают заболевания у людей, зверей и птиц), условно-патогенные (очень часто бессимптомными носителями их являются культуры клеток) и микоплазмы-сапрофиты. Микоплазмы – наиболее мелкие и просто организован­ные прокариоты, способные к автономному размножению, а минимальные элементарные тельца, например Acholeplasma laidlawii, по размерам сопоставимы с минимальной исходной клеткой-прогенотой. Согласно теоретическим расчетам, простейшая гипотетическая клетка, способная автономно размножаться, должна иметь диаметр около 500 ангстрем, содержать ДНК с м. м. 360 000 Д и около 150 макромолекул. Элементарное тельце A. laidlawii имеет диаметр около 1000 ангстрем, т. е. всего в 2 раза больше, чем гипотетическая клетка, содержит ДНК с м. м. 2 880 000 Д, т. е. осуществляет гораздо больше метаболических процессов, и содержит не 150, а около 1200 макромолекул. Можно полагать, что микоплазмы являются наиболее близкими потомками исходных прокариотных клеток.

Рис. . Формирование колонии микоплазмы на плотной среде (Прокариоты. 1981, т. II)

А. Вертикальный срез агара перед посевом (а – пленка воды, б – нити агара). Б. Капля, содержащая жизнеспособные микоплазмы, нанесена на поверхность агара.

В. Через 15 мин. после посева капля адсорбирована агаром.

Г. Приблизительно через 3-6 ч после посева. Жизнеспособная частица проникла в агар.

Д. Приблизительно через 18 ч после посева. Маленькая сферическая колония сформировалась ниже поверхности агара. Е. Приблизительно через 24 ч после посева. Колония достигла поверхности агара.

Ж. Приблизительно через 24-48 ч после посева. Колония достигла свободной водной пленки, образуя периферическую зону (г – центральная зона, в – периферическая зона колонии)

Резистентность к различным агентам, подавляющим синтез клеточной стенки, в том числе к пенициллину и его производным, множественность путей репродукции (бинарное деление, почкова­ние, фрагментация нитей, цепочечных форм и шаровидных образований). Клетки разме­ром 0,1-1,2 мкм, грамотрицательны, но луч­ше окрашиваются по Романовскому – Гимзе; различают подвижные и неподвижные виды. Минимальной репродуцирующейся единицей является элементарное тельце (0,7 – 0,2 мкм) сферическое или овальное, позднее удли­няющееся вплоть до разветвленных нитей. Клеточная мембрана находится в жидкокристаллическом состоянии; включает белки, мо­заично погруженные в два липидных слоя, основной компонент которых – холестерин. Размер генома наименьший среди прокариот (составляет "/ 16 генома риккетсий); обладают минимальным набором органелл (нуклеоид, цитоплазматическая мембрана, рибосомы). Соотношение ГЦ-пар в ДНК у большинства видов низкое (25-30 мол.%), за исключением М. pneumoniae (39 – 40 мол.%). Теоретический минимум содержания ГЦ, необходимый для кодирования белков с нормальным набором аминокислот, равен 26 %, следовательно, микоплазмы находятся у этой грани. Простота организации, ограниченность генома опре­деляют ограниченность их биосинтетических возможностей.

Для микоплазм характерен чрезвычайно выраженный полиморфизм, обусловленный в первую очередь отсутствием твердой клеточной стенки, присущей бактериям, а также сложным циклом развития. Мельчайшие структурные элементы, способные к репродукции в искусственных питательных средах, принято называть минимальными репродуктивными единицами. На форму и размеры минимальных репродуктивных единиц, а также клеточных элементов разных стадий развития существенно влияют условия культивирования, физико-химические свойства питательных сред, особенности штамма и количество пассажей на средах, техника приготовления, фиксации и окраски препаратов и другие факторы.
В связи с тем, что микоплазмы не имеют клеточной стенки, их мембрана и цитоплазма легко повреждаются химическими реактивами, употребляемыми для фиксации и окраски препаратов. Особенно чувствительны к воздействиям факторов внешней среды клетки микоплазм па ранних стадиях развития.
В мазках из пораженных органов и из выращенных в среде культур микоплазмы представлены округлыми, овальными и кольцевидными образованиями. Иногда встречаются коккобациллярные и похожие на бактерии формы. Отдельные виды микоплазм (М. mycoides var. mycoides, М. mycoides var. capri, М. agalacliae) в органах и па питательных средах формируют нитевидные мицелиальные формы.
Электронно-микроскопическими исследованиями и путем фильтрования выращенных культур через мембранные фильтры с известным диаметром нор было показано, что в одной и той же культуре имеются различные по форме и величине образования, способные к репродукции (рис. 1). При исследовании различных видов микоплазм, выделенных из органов животных и человека, а также объектов внешней среды было установлено, что величина элементарных частиц колеблется от 125 до 600 им. В определителе Бердже размер клеток микоплазм исчисляется 125-200 нм. По данным Е. Freundt, величина минимальных репродуктивных единиц микоплазм колеблется между 250-300 нм. Другие авторы определили их размер в пределах 200-500-700 нм, а G. Wildfur, применив метод ультрафильтрации. - 100-150 нм. Следует отметить, что величина клеток микоплазм зависит не только от вида и штамма, но и от других факторов, влияющих на клетку.
Таким образом, размер минимальных репродуктивных единиц в культурах микоплазм варьирует в значительных пределах.