1 какую логическую структуру имеют жесткие диски. Жесткий диск - это. Монтирование файловых систем

Любой жесткий диск имеет в своем составе: пластину (блин, зеркало) покрытую тонким слоем магнитного материала, блок головок (БМГ), механизм, обеспечивающий высокоточную установку головок на нужный сектор, корпус и плату микроконтроллера. Зеркальный блин (их может быть и несколько), на котором хранятся данные, закреплен на вращающемся шпинделе. Головки всегда работают в паре – считывающая и записывающая. Позиционирующее устройство отвечает за расположение БМГ относительно поверхности магнитной пластины. Корпус фиксирует все перечисленные выше элементы и надежно защищает их от физического воздействия извне. Плата электроники, на которой размещен микроконтроллер, реализует функции управления работой всех систем жесткого диска и отвечает за двустороннюю транспортировку информации.

Геометрия жестких дисков

Пластины винчестера могут быть отлиты из легких металлических сплавов или керамики. Каждая плоскость блина (или рабочая поверхность) покрывается специальным магнитным веществом, благодаря которому данные сохраняются на диске, и полируется до зеркального блеска. Состав феромагнитного материала каждого слоя покрытия (слоев, как правило, несколько) не одинаков и является технологическим секретом. В непосредственной близости от каждой рабочей поверхности расположены магнитные головки. Для увеличения производительности HDD они всегда работают попарно, одна на чтение, другая на запись.

При форматировании на зеркало наносится концентрическая насечка, образую своеобразные кольцевые зоны, которые называют дорожками. Для удобства работы каждую дорожку исходящими от центра пластины радиусами разделяют на сектора (кластеры). Любой кластер состоит из двух условных сегментов используемых для хранения служебной информации и непосредственно данных пользователя. Содержание служебного сегмента формируется единожды на конвейере завода и не перезаписывается впоследствии. Кроме всего прочего, служебный сегмент содержит относительный адрес всего сектора на поверхности пластины. Именно поэтому адресу и происходит обращение к кластеру при операциях чтения или записи.

Кластерный сегмент данных наполнен информацией, необходимой пользователю.

Другими словами в нем хранятся кусочки тех файлов, что владелец накопителя записывает на него. Важно помнить, что сегмент данных каждого сектора не способен перезаписываться частями. Он будет обновлен полностью, даже если размеры копируемого на винчестер файла меньше допустимой области данных кластера.

В случае, когда жесткий диск состоит из нескольких магнитных пластин, специалисты вводят в обиход еще один термин – цилиндр. Этим словом обозначается набор из дорожек, расположенных на разных блинах или соседних рабочих поверхностях одного зеркала и доступных для чтения/записи без изменения положения блока магнитных головок. Если учесть, что позиционирование БМГ происходит не мгновенно, то идеально расположенные кластеры единого файла должны находиться в рамках одного цилиндра.

Изначально каждая дорожка в независимости от своей близости к центру была разбита на фиксированное количество кластеров. Это позволяло контроллеру проводить адресацию сектора, указывая лишь его номер и номер цилиндра, а также ту головку, которой необходимо выполнить операцию. Если проводить аналогию с трехмерной областью, то на пластине была сформирована своеобразная цилиндрическая система координат, где для определения точки в пространстве указывался ее угол (номер сектора), высоту (номер головки) и радиус (номер цилиндра). Продолжив аналогию на декартовую область трех измерений, мы придем к модели многоэтажного дома, каждая квартира в котором похожа на предыдущую и определяется отдельным номером.

Указанное расположение кластеров практически в три раза уменьшало плотность записи на периферийных дорожках, по отношению к внутренним. С учетом этого недостатка была разработана новая форма разметки поверхности, в которой количество кластеров на дорожке возрастает по мере удаления от центра пластины. Такая форма записи информации получила название зонная и позволила почти в два раза повысить количество полезного информационного объема, без увеличения геометрических размеров блина и относительной плотности записи на его поверхности.

Полученную разметку теперь гораздо сложнее представить в декартовой системе координат, поэтому отформатированный подобным образом жесткий диск не всегда корректно определялся BIOSом. Это связано с тем, что не каждый интерфейс способен правильно произвести преобразование кластерной структуры так, чтобы было понятно для микропрограммы материнской платы. Именно по этой причине из обихода вышли, а со временем и совсем забылись несколько дисковых интерфейсов — ST506/412, ESDI и прочие. С вводом новой геометрии разметки только IDE и SCSI не сошли с дистанции.

На самом деле процедура преобразования хаотичной круговой структуры в аккуратную трехмерную модель очень похожа на коварный обман. К примеру, BIOS ограничивает максимальное количество секторов на дорожке цифрой 63, в реалиях кластеров получается значительно больше. Интерфейс обманывает BIOS, представляя тому фальшивую адресную структуру, в которой секторов на дорожке ровно 63. Такая же подмена происходит и с числом головок. Для удобства адресации их количество варьируется в диапазоне от 16 до 255 штук, на самом деле их редко бывает больше 6. При зонной разметке скорость обмена данными мало зависит от близости дорожки к центру пластины, на ее величину в большей степени будет влиять номер цилиндра, в котором расположены кластеры информации.

Если Вам необходимо , то обращайтесь к нам, мы поможем Вам с этой проблемой.

Подобно дискетам жесткий диск делится на дорожки и секторы. Каждая дорожка однозначно определяется номером головки и порядковым номером на диске относительно внешнего края. Секторы идентифицируются своим порядковым номером относительно начала дорожки. Нумерация секторов на дорожке начинается с единицы, а головок и цилиндров - с нуля.

Количество секторов может быть различным (от 17 до 150) в зависимости от типа накопителя. Каждый сектор содержит некоторую служебную информацию и данные. Обычно объем сектора составляет 571 байт. В начале каждого сектора записывается заголовок (Prefix portion), по которому определяется начало сектора и его номер, а в конце сектора (Suffix portion - заключение сектора) содержится контрольная сумма, необходимая для проверки целостности данных. Между заголовком и заключением сектора находится область данных объемом 512 байт (для DOS). Запись информации на дорожках осуществляется не постоянным потоком, как в бытовых магнитофонах а блоками по 512 байт.

Число дисков, головок и дорожек винчестера устанавливается изготовителем, исходя из свойств и качества дисков. Изменить эти характеристики нельзя. Количество секторов на диске зависит от метода записи, а плотность - от носителя: чем лучше материал диска, тем плотнее могут быть записаны на нем данные. Современные винчестеры содержат до 150 секторов на дорожке.

Основные типы интерфейсов

Винчестер обязательно подключается через контроллер, который может располагаться как на специальной карте расширения, так и на самой системной плате. Именно этот контроллер выполняет прием, передачу и обработку сигналов от винчестера. На практике наиболее распространенными сейчас являются винчестеры типа IDE, реже SCSI.

Рассмотрим подробнее данные типы жестких дисков.

В винчестерах типа IDE (Integrated Drive Electronics) управляющая электроника расположена не в контроллере, а в винчестере. Преимущество жестких дисков такого типа проявляется, прежде всего, при приеме и передаче информации, то есть в таких винчестерах оптимально согласованы прием и передача сигналов. Такие винчестеры связываются с контроллером 40-жильным плоским кабелем. Винчестеры типа IDE нет необходимости форматировать на низком уровне. После его установки в корпус компьютера и подключения остается только:

    Записать в CMOS Setup его параметры

    Разбить винчестер на разделы и

    Отформатировать его средствами операционной системы

Для компенсации различной плотности записи и используется метод зонно-секционной записи. Суть метода заключается в том, что все рабочее пространство магнитного диска делится на зоны: 8 и более. В самой младшей зоне, то есть на дорожке, которая расположена дальше всех от центра диска, содержится большее количество секторов (обычно 120-96). К центру диска количество секторов уменьшается, достигая в самой старшей зоне 64-56. В результате чего, поскольку диск вращается с постоянной скоростью, от внешних зон поступает значительно больший объем информации, чем от внутренних. Неравномерность поступления данных компенсируется путем увеличения скорости работы канала считывания/преобразования данных и использования специальных перестраиваемых фильтров для частотной коррекции по зонам, а также путем применения производительных однокристальных микроконтроллеров.

Винчестеры, работающие таким образом, нельзя объявлять в CMOS Setup с их фактическими параметрами. Для этих дисков существует опция, называемая Translation Mode (режим трансляции). При ее установке значение, указанное в CMOS Setup, пересчитывается контроллером в соответствии с расположением цилиндров и секторов.

Приветствую всех читателей блога . Многих интересует вопрос - как устроен жесткий диск компьютера. Поэтому я решил посвятить этому сегодняшнюю статью.

Жесткий диск компьютера (HDD или винчестер) нужен для хранения информации после выключения компьютера, в отличие от ОЗУ () - которая хранит информацию до момента прекращения подачи питания (до выключения компьютера).

Жесткий диск, по-праву, можно назвать настоящим произведением искусства, только инженерным. Да-да, именно так. Настолько сложно там внутри все устроено. На данный момент во всем мире жесткий диск - это самое популярное устройство для хранения информации, он стоит в одном ряду с такими устройствами, как: флеш-память (флешки), SSD. Многие наслышаны о сложности устройства жесткого диска и недоумевают, как в нем помещается так много информации, а поэтому хотели бы узнать, как устроен или из чего состоит жесткий диск компьютера. Сегодня будет такая возможность).

Жесткий диск состоит из пяти основных частей. И первая из них - интегральная схема , которая синхронизирует работу диска с компьютером и управляет всеми процессами.

Вторая часть - электромотор (шпиндель), заставляет вращаться диск со скоростью примерно 7200 об/мин, а интегральная схема поддерживает скорость вращения постоянной.

А теперь третья, наверное самая важная часть - коромысло , которое может как записывать, так и считывать информацию. Конец коромысла обычно разделен, для того чтобы можно было работать сразу с несколькими дисками. Однако головка коромысла никогда не соприкасается с дисками. Существует зазор между поверхностью диска и головкой, размер этого зазора примерно в пять тысяч раз меньше толщины человеческого волоса!

Но давайте все же посмотрим, что случится, если зазор исчезнет и головка коромысла соприкоснется с поверхностью вращающегося диска. Мы все еще со школы помним, что F=m*a (второй закон Ньютона, по-моему), из которого следует, что предмет с небольшой массой и огромным ускорением - становится невероятно тяжелым. Учитывая огромную скорость вращения самого диска, вес головки коромысла становится весьма и весьма ощутимым. Естественно, что повреждение диска в таком случае неизбежно. Кстати, вот что случилось с диском, у которого этот зазор по каким то причинам исчез:

Так же важна роль силы трения, т.е. ее практически полного отсутствия, когда коромысло начинает считывать информацию, при этом смещаясь до 60 раз за секунду. Но постойте, где же здесь находится двигатель, что приводит в движение коромысло, да еще с такой скоростью? На самом деле его не видно, потому что это электромагнитная система, работающая на взаимодействии 2 сил природы: электричества и магнетизма. Такое взаимодействия позволяет разгонять коромысло до скоростей света, в прямом смысле.

Четвертая часть - сам жесткий диск, это то, куда записывается и откуда считывается информация, кстати их может быть несколько.

Ну и пятая, завершающая часть конструкции жесткого диска - это конечно же корпус, в который устанавливаются все остальные компоненты. Материалы применяются следующие: почти весь корпус выполнен из пластмассы, но верхняя крышка всегда металлическая. Корпус в собранном виде нередко называют "гермозоной". Бытует мнение, что внутри гермозоны нету воздуха, а точнее, что там - вакуум. Мнение это опирается на тот факт, что при таких высоких скоростях вращения диска, даже пылинка, попавшая внутрь, может натворить много нехорошего. И это почти верно, разве что вакуума там никакого нету - а есть очищенный, осушенный воздух или нейтральный газ - азот например. Хотя, возможно в более ранних версиях жестких дисков, вместо того, чтобы очищать воздух - его просто откачивали.

Это мы говорили про компоненты, т.е. из чего состоит жесткий диск . Теперь давайте поговорим про хранение данных.

Как и в каком виде хранятся данные на жестком диске компьютера

Данные хранятся в узких дорожках на поверхности диска. При производстве, на диск наносится более 200 тысяч таких дорожек. Каждая из дорожек разделена на секторы.

Карты дорожек и секторов позволяют определить, куда записать или где считать информацию. Опять же вся информация о секторах и дорожках находится в памяти интегральной микросхемы, которая, в отличие от других компонентов жесткого диска, размещена не внутри корпуса, а снаружи и обычно снизу.

Сама поверхность диска - гладкая и блестящая, но это только на первый взгляд. При более близком рассмотрении структура поверхности оказывается сложнее. Дело в том, что диск изготавливается из металлического сплава, покрытого ферромагнитным слоем. Этот слой как раз и делает всю работу. Ферромагнитный слой запоминает всю информацию, как? Очень просто. Головка коромысла намагничивает микроскопическую область на пленке (ферромагнитном слое), устанавливая магнитный момент такой ячейки в одно из состояний: о или 1. Каждый такой ноль и единица называются битами. Таким образом, любая информация, записанная на жестком диске, по-факту представляет собой определенную последовательность и определенное количество нулей и единиц. Например, фотография хорошего качества занимает около 29 миллионов таких ячеек, и разбросана по 12 различным секторам. Да, звучит впечатляюще, однако в действительности - такое огромное количество битов занимает очень маленький участок на поверхности диска. Каждый квадратный сантиметр поверхности жесткого диска включает в себя несколько десятков миллиардов битов.

Принцип работы жесткого диска

Мы только что с вами рассмотрели устройство жесткого диска, каждый его компонент по отдельности. Теперь предлагаю связать все в некую систему, благодаря чему будет понятен сам принцип работы жесткого диска.

Итак, принцип, по которому работает жесткий диск следующий: когда жесткий диск включается в работу - это значит либо на него осуществляется запись, либо с него идет чтение информации, или с него , электромотор (шпиндель) начинает набирать обороты, а поскольку жесткие диски закреплены на самом шпинделе, соответственно они вместе с ним тоже начинают вращаться. И пока обороты диска(ов) не достигли того уровня, чтобы между головкой коромысла и диском образовалась воздушная подушка, коромысло во избежание повреждений находится в специальной "парковочной зоне". Вот как это выглядит.

Как только обороты достигают нужного уровня, сервопривод (электромагнитный двигатель) приводит в движение коромысло, которое уже позиционируется в то место, куда нужно записать или откуда считать информацию. Этому как раз способствует интегральная микросхема, которая управляет всеми движениями коромысла.

Распространено мнение, этакий миф, что в моменты времени, когда диск "простаивает", т.е. с ним временно не осуществляется никаких операций чтения/записи, жесткие диски внутри перестают вращаться. Это действительно миф, ибо на самом деле, жесткие диски внутри корпуса вращаются постоянно, даже тогда, когда винчестер находится в энергосберегающем режиме и на него ничего не записывается.

Ну вот мы и рассмотрели с вами устройство жесткого диска компьютера во всех подробностях. Конечно же, в рамках одной статьи, нельзя рассказать обо всем, что касается жестких дисков. Например в этой статье не было сказано про - это большая тема, я решил написать про это отдельную статью.

Нашел интересное видео, про то, как работает жесткий диск в разных режимах

Всем спасибо за внимание, если вы еще не подписаны на обновления этого сайта - очень рекомендую это сделать, дабы не пропустить интересные и полезные материалы. До встречи на страницах блога!

Структура жесткого диска (поверхность, цилиндр, сектор).

Жесткие магнитные диски представляют собой несколько металлических либо керамических дисков, покрытых магнитным слоем. Диски вместе с блоком магнитных головок установлены внутри герметичного корпуса накопителя на жестких магнитных дисках (НЖМД), обычно называемого винчестером.

Термин «винчестер» возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973гю), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30"/30" известного охотничьего ружья «винчестер». Жесткий диск представляет собой очень сложное устройство с высокоточной механикой и электронной платой, управляющей работой диска.

Структура жестких дисков имеет в целом такую же структуру, как и гибкие магнитные диски.

Магнитные пластины, установленные в накопителе, размещены на одной оси и вращаются с большой угловой скоростью. Обе стороны каждой пластины покрыты тонким слоем намагниченного материалазапись проводится на обе поверхности каждой пластины (кроме крайних).

У каждой магнитной стороны каждой пластины есть своя магнитная головка чтения/записи. Эти головки соединяются вместе и движутся радиально (по радиусу) по отношению к пластинам. Таки образом обеспечивается доступ к любой дорожке любой пластины

Повторение – мать учения!

Структура жёсткого диска

Сектора

Любой жёсткий диск можно представить как огромный «чистый лист», на который можно записывать данные и откуда потом их можно считать. Чтобы ориентироваться на диске, всё его пространство разбивают на небольшие «клеточки» - сектора . Сектор - это минимальная единица хранения данных на диске, обычно его размер составляет 512 байт. Все сектора на диске нумеруются: каждый из n секторов получает номер от 0 до n–1. Благодаря этому любая информация, записанная на диск, получает точный адрес - номера соответствующих секторов. Так что диск ещё можно представить как очень длинную строчку (ленточку) из секторов. Можете посчитать, сколько секторов на вaшем диске размером в N гигабайт.

Разделы

Представлять жёсткий диск как единый «лист» не всегда бывает удобно: иногда полезно «разрезать» его на несколько независимых листов, на каждом из которых можно писать и стирать что угодно, не опасаясь повредить написанное на других листах. Логичнее всего записывать раздельно данные большей и меньшей важности или просто относящиеся к разным вещам.

Конечно, над жёстким диском следует производить не физическое, а логическое разрезание, для этого вводится понятие раздел (partition). Вся последовательность (очень длинная ленточка) секторов разрезается на несколько частей, каждая часть становится отдельным разделом. Фактически, нам не придётся ничего разрезать (да и вряд ли бы это удалось), достаточно объявить, после каких секторов на диске находятся границы разделов.

Таблица разделов

Технически разбиение диска на разделы организовано следующим образом: заранее определённая часть диска отводится под таблицу разделов , в которой и написано, как разбит диск. Стандартная таблица разделов для диска IBM-совместимого компьютера - HDPT (H ard D isk P artition T able) - располагается в конце самого первого сектора диска, после предзагрузчика (M asterB oot R ecord, MBR) и состоит из четырёх записей вида «тип начало конец », по одной на каждый раздел. Начало и конец - это номера тех секторов диска, где начинается и заканчивается раздел. С помощью такой таблицы диск можно поделить на четыре или меньше разделов: если раздела нет, тип устанавливается в 0.

Однако четырёх разделов редко когда бывает достаточно. Куда же помещать дополнительные поля таблицы разбиения? Создатели IBM PC предложили универсальный способ: один из четырёх основных разделов объявляется расширенным (extended partition); он, как правило, является последним и занимает всё оставшееся пространство диска.

Расширенный раздел можно разбить на подразделы тем же способом, что и весь диск: в самом начале - на этот раз не диска, а самого раздела - заводится таблица разделов , с записями для четырёх разделов, которые снова можно использовать, причём один из подразделов может быть, опять-таки, расширенным, со своими подразделами и т. д.

Разделы, упомянутые в таблице разделов диска , принято называть основными (primary partition), а все подразделы расширенных разделов - дополнительными (secondary partition). Так что основных разделов может быть не более четырёх, а дополнительных - сколько угодно.

Чтобы не усложнять эту схему, при разметке диска соблюдают два правила: во-первых, расширенных разделов в таблице разбиения диска может быть не более одного, а во-вторых, таблица разбиения расширенного раздела может содержать либо одну запись - описание дополнительного раздела, либо две - описание дополнительного раздела и описание вложенного расширенного раздела.

Тип раздела

В таблице разделов для каждого раздела указывается тип , который определяет файловую систему , которая будет содержаться в этом разделе. Каждая операционная система распознаёт определённые типы и не распознаёт другие, и, соответственно, откажется работать с разделом неизвестного типа.

Следует всегда следить за тем, чтобы тип раздела, установленный в таблице разделов, правильно указывал тип файловой системы, фактически содержащейся внутри раздела. На сведения, указанные в таблице разделов, может полагаться не только ядро операционной системы, но и любые утилиты, чьё поведение в случае неверно указанного типа может быть непредсказуемым и повредить данные на диске.

Подробнее о файловых системах см. раздел Типы файловых систем .

Логические тома (LVM)

Работая с разделами, нужно учитывать, что производимые над ними действия связаны непосредственно с разметкой жёсткого диска. С одной стороны, разбиение на разделы - это наиболее традиционный для PC способ логической организации дискового пространства. Однако если в процессе работы появится потребность изменить логику разбиения диска или размеры областей (т. е. когда возникает задача масштабирования ), работа с разделами не очень эффективна.

Например, при необходимости создать новый раздел или увеличить размер существующего, можно столкнуться с рядом трудностей, связанных с ограничением количества дополнительных разделов или перераспределением данных. Избежать их очень просто: нужно лишь отказаться от «привязки» данных к определённой области жёсткого диска. В Linux эта возможность реализуется при помощи менеджера логических томов (LVM - L ogical V olume M anager). LVM организует дополнительный уровень абстракции между разделами с одной стороны и хранящимися на нихданными с другой, выстраивая собственную иерархическую структуру.

Начинающие пользователи часто не имеют вообще никаких понятий о разделах своего жёсткого диска и логических дисках винчестера. Поначалу это совсем не мешает их работе на компьютере, хотя и не позволяет использовать его более продуктивно. Но иногда приходится сталкиваться с более ответственными вещами, и тогда незнание простых правил может обернуться серьёзными проблемами, вплоть до полной неработоспособности операционной системы и потери важных данных.

На самом деле, достаточно запомнить несколько простых вещей и держать эти сведения в голове при любых действиях с разделами жёсткого диска.

Что же такое раздел

Начну с того, что новый, свежекупленный жёсткий диск совершенно непригоден для работы без предварительной подготовки. Чтобы можно было сохранять на него данные и читать их, для этих данных необходимо сначала создать специальные "хранилища" - разделы, и подготовить эти "хранилища" для "складирования" и хранения ваших файлов - отформатировать, т.е. создать на них файловую систему. Как только хотя бы один раздел будет создан и отформатирован, его уже можно использовать.

Иногда бывает, что на винчестере имеется всего один раздел, занимающий весь жёсткий диск. Особенно часто это можно наблюдать у новичков, только что купивших компьютер. Такой вариант является самым простых, но и самым неудачным, т.к. и операционная система и ваши данные хранятся в одном месте, и при любых проблемах с операционкой, либо при переустановке ОСи вы рискуете потерять сразу всё.

Более практичным является вариант, когда жёсткий диск разделён на несколько разделов - хотя бы на два. На одном разделе стоит сама операционная система, а на другом складируются ваши файлы. В этом случае при проблемах или переустановке операционки пострадает только тот раздел, на котором она стояла. Всё остальное останется нетронутым.

Кроме того, разделение на несколько разделов позволит более удобно организовать хранение файлов - можно, например, выделить отдельный раздел под музыку или видео, если у вас их много; или если вы часто работаете с торрентами, можно выделить под них отдельный кусок жёсткого диска.

Также упрощается обслуживание компьютера - например, гораздо проще и быстрее дефрагментировать по очереди несколько относительно небольших разделов, чем один огромный кусок. Аналогично - и со сканированием диска антивирусом.

В общем, с удобством разобрались - тут каждым волен исхитряться в меру своих потребностей. Однако, существует несколько простых правил, нарушение которых чревато полной потерей данных.

Начну по порядку.

Правило № 1

Всего на одном жёстком диске может быть не более 4-х основных разделов , меньше можно, больше - нет. Эти требования не зависят от какой-либо операционной системы - они продиктованы современным уровнем развития электронной начинки компьютера. И преодолеть их пока не удастся. Если же разделов требуется более 4-х, то тут вступает в силу другое правило.

Я не напрасно упомянул об ОСНОВНЫХ разделах - это не просто слово, оно обозначает один из двух типов разделов. Кроме основного, раздел может быть ещё и дополнительным (расширенным - extended). И в связи с этим правило о 4-х разделах несколько трансформируется - на одном жёстком диске может находиться до 4-х основных разделов, или до 3-х основных разделов плюс один дополнительный (расширенный раздел на диске может быть только один).

Что это нам дает? Дело в том, что дополнительный (расширенный) раздел, по сути, представляет из себя контейнер, внутри которого можно создавать НЕОГРАНИЧЕННОЕ количество логических дисков. И для пользователя не будет совершенно никакой разницы между работой с основным разделом и работой с логическим диском. Таким образом, путём создания расширенного раздела и логических дисков внутри него мы может разделить винчестер под свои нужды так, как нам потребуется.

Учтите, что если вы удалите расширенный раздел, все логические диски, входящие в него тоже исчезнут.

Правило № 2

Один из разделов обязательно должен быть активным (в Linux - иметь флаг boot ). Именно на нём находятся загрузочные файлы, которые будут запускать операционную систему. Сама система может при этом находиться и в другом месте, но файлы, с которых начинается её запуск - только там.

Чаще всего активным становится первый раздел жёсткого диска (диск C :/ в Windows), но это не обязательное условие. Кроме того, всегда можно вручную переназначить активным любой другой основной раздел, но при этом не следует забывать переместить туда же загрузочные файлы, иначе операционная система не запустится.

Правило № 3

Если Вы собираетесь установить на одном компьютере несколько операционных систем, то каждую из них следует устанавливать в отдельный раздел (теоретически, можно поставить и в один, но последующих после этого проблем избежать не удастся ). Операционные системы семейства Windows могут устанавливаться только на основные разделы. Соответственно, если Вы собираетесь установить две Windows в режиме мультизагрузки, то они у Вас займут два основных раздела. Операционные системы Linux такого ограничения не имеют и могут устанавливаться куда угодно.

Файловые системы

Перед тем, как использовать раздел, его требуется отформатировать - создать на нём файловую систему (разметить особым образом).

Файловых систем сейчас существует довольно большое количество, и все имеют разные характеристики.

Операционные системы семейства Windows могут работать только с файловыми системами FAT, FAT32 и NTFS.

FAT является сильно устаревшей системой, и её применение сегодня вряд ли оправдано. FAT32 более современна, но имеет серьёзные ограничения. которые препятствуют её полноценному использованию. Например, максимальный размер файла, который поддерживает FAT32 - это около 4 ГБ. Именно поэтому, если Вы попытаетесь, например, скопировать образ полновесного ДВД-диска на флэшку (которые по дефолту форматируются в FAT32 ) Вы получите сообщение о нехватке свободного места, хотя на самом деле места там ещё полно. Из-за этого использование её на разделах, на которых происходит работа с видео, практически невозможна (и под раздел с торрентами её использовать проблематично ).

Лучшим выбором для работы под Windows сегодня будет файловая система NTFS . Она не имеет таких ограничений, как FAT32, обладает дополнительными возможностями по обеспечению безопасности, более стабильна и надёжна.

Для UNIX-ов, к которым относится и Linux, файловых систем существует гораздо больше. Каждая их них имеет свои достоинства и недостатки и более подходит под определённые задачи. По умолчанию в Linux используется ext4 , но можно использовать и любую другую. Информацию, какая из файловых систем Linux более всего подходит именно под Ваши задачи, Вы легко найдёте в Интернете.

Несколько слов о совместимости

Windows не понимает никаких других файловых систем, кроме своих собственных. Доступ из-под неё к разделам Linux возможен был только с помощью специальных программ или плагина к Total Commander. К сожалению, к самым современным файловым системам Linux плагин для Windows ещё не написан.

Linux же всегда прекрасно понимал FAT и FAT32, а в последние 2-3 года без проблем работает и с NTFS через специальный драйвер NTFS-3g , как на чтение, так и на запись. Плюс, поддерживает при этом бОльшую часть дополнительных возможностей NTFS. Так что из Linux Вы всегда будете иметь полноценный доступ к Windows разделам.

Следует упомянуть о различной бытовой технике - DVD-проигрывателях, спутниковых ресиверах и т.д. Вся эта техника может работать только с FAT и FAT32. NTFS, а тем более файловые системы UNIX-ов (за крайне редким исключением ) ей совершенно непонятны. Об этом следует помнить, если Вы обмениваетесь данными между подобной техникой и компьютером.

Инструменты для работы

Несколько слов об инструментарии для работы с разделами.

Начну с Windows. В её состав входит штатный инструмент Управление дисками . Добраться до него можно через Панель управления , либо щёлкнув правой кнопкой мыши на значке Мой компьтер => Управление и выбрав в левой колонке Управление дисками .

Обратите внимание, три раздела на скриншоте помечены как неизвестные разделы. Это разделы с Linux - Windows их видит, но ни определить, ни тем более работать с ними она не может.

Также в Управлении дисками достаточно чётко можно увидеть основные и дополнительный разделы, а также активный раздел (помечен как Система - на нём находятся загрузочные файлы; сама ОСь установлена в разделе, помеченном как - т.е. Windows меняет метки местами ). Из всех возможностей этот инструмент предоставляет только создание и удаление разделов, а также переназначение активного раздела и смену буквы дисков (в Vista и Windows 7 функционал незначительно увеличился ). Если ничего другого под руками не оказалось, то порой и этого бывает достаточно.

Важно помнить , что Управление дисками - инструмент неудобный, малофункциональный и крайне опасный, особенно в неопытных руках. Подразумевается, что пользователь, который его применяет, абсолютно точно знает, что он делает, т.к. любые изменения применяются сразу, без вопросов, и невозможно заранее посмотреть, к чему приведут те или иные действия.

Поэтому я советую использовать его только в крайних случаях.

Гораздо бОльшими возможностями, удобством и безопасностью обладают различные программы из когорты Partition Magic -ов, например, . Таких программ имеется достаточно большое количество, все они разные и в последние годы многие из них поменяли владельцев-разработчиков и своё название. Поэтому, если Вы решили подобрать себе что-либо из них, Вам придётся озаботиться самостоятельным поиском на широких просторах Интернета. Это несложно, тем более, что лидеров в этой области можно по пальцам перечесть.

Acronis Disk Director Suite

На мой же взгляд (исключительно на мой - т.к. у многих на этот счёт может быть другое мнение ), наиболее мощной и удобной программой для работы с жёстким диском и разделами является .

Программа русская (хотя изредка попадаются её варианты с английским языком) и очень проста в обращении. При этом она полностью обеспечивает весь спектр возможных операций с жёстким диском. Кроме того, практически все Ваши действия над разделами происходят без потери информации, которая на них находится.

Все операции, которые Вы проводите над разделами, моментально отображаются в графическом виде, чтобы всё можно было оценить визуально. Но сами действия при этом не производятся - лишь только после того, как Вы сами всё оцените, и результат целиком и полностью Вас удовлетворит, можно нажать кнопку "Применить ". До этого момента можно пошагово отменить все действия.

Если к компьютеру подключены несколько жёстких дисков, все они будут показаны в окне программы - один над другим. Основные разделы помечаются зелёными флажками, а красным флагом отмечен активный раздел.

Кроме того, при запуске Acronis Disk Director Suite предлагает на выбор два режима работы - автоматический, в котором все операции можно проводить с помощью "мастеров", и ручной режим, в котором вся полнота власти отдаётся на откуп пользователю. Второй режим, имхо, удобнее и гибче, но новички могут воспользоваться и автоматическим.

Также в программе присутствует полноценная и весьма подробная справка.

Следует упомянуть ещё об одной возможности - из окна программы можно создать и записать специальный загрузочный диск, который будет содержать файлы Acronis Disk Director Suite . Штука эта очень удобная и крайне полезная в хозяйстве - ведь имея этот диск, полностью отпадает надобность в установке самой программы и даже в наличии операционной системы. С этого диска можно загрузить компьютер и выполнить любые операции с разделами.

Теперь о неприятном. Заключается оно в том, что программа сравнительно редко обновляется, поэтому иногда возникают ситуации, когда с самыми современными жёсткими дисками она работать не может. Это в большей степени касается её варианта на загрузочном диске, т.к. если Acronis Disk Director Suite установить в операционную систему, то для работы с диском она будет использовать драйвера из комплекта Windows. Также у неё есть некоторые проблемы с файловыми системами Unix - самые современные файловые системы она не понимает (это можно заметить на представленном скриншоте ), хотя со старыми классическими работает "на ура".

На днях вышла новая версия Acronis Disk Director Suite для англоязычных пользователей (новой русской версии пока нет), которая уже без всяких проблемм работает с самыми новыми жёсткими дисками. А вот проблемы с современными файловыми системами Unix в ней пока ещё не решены.

GParted

Ещё один мощный и универсальный инструмент для работы с жёстким диском - это программа GParted из комплекта Linux.

Её можно найти практически на всех Live-CD с Linux.

Рассказ о возможностях программы можно уместить в одной фразе: "Может почти всё". Интерфейс прост и непритязателен, а работа абсолютно прозрачна и понятна. Все Ваши действия также сначала отображаются визуально, а выполняются лишь после нажатия специальной кнопки, когда Вы решите, что Вас всё устраивает.

Кроме того, GParted поддерживает гораздо большее количество файловых систем, включая самые современные.

Если у Вас несколько жёстких дисков, в окне программы единовременно будет показан только один. Для работы с другими воспользуйтесь раскрывающимся списком на панели (справа), в котором перечислены все подключенные винчестеры.

GParted не может работать с разделами, которые в этот момент примонтированы (напротив такого раздела будет стоять предупреждающий значок). Для выполнения любых действий с такими разделами их сначала придётся отмонтировать.

Несколько замечаний о программах, которые входят в инсталляторы операционных систем и могут применяться при установки ОСи.

При установке Windows все разделы жёсткого диска будут видны совершенно одинаковыми, без деления на основные и расширенный. Отличия будут только в метках и размерах, и можно крайне легко запутаться. Поэтому использовать его желательно только если Вы впервые ставите операционку на новый жёсткий диск. Если же Ваш диск уже использовался, и на нём есть какая-либо информация, лучше всего позаботиться обо всём заранее в сторонней программе, а действия в инсталляторе свести лишь к выбору нужного раздела и форматированию (при необходимости).

Аналогичная ситуация и при установке Linux. Хотя там всё определяется верно, но отображено не слишком наглядно, и работа происходит менее прозрачно, чем в том же GParted .

Так что лучше всего перед установкой создать разделы нужного размера в нужном месте и отформатировать их в любую файловую систему Linux, а при установке ОСи, проигнорировав предложенные автоматические варианты и выбрав ручное разбиение, просто примонтировать их в нужные места и сменить при необходимости файловую систему на другую, простым проставлением "галочки" в графе Форматировать напротив своих разделов.

Для большей наглядности рекомендую тщательно изучить скриншоты к статье (скриншоты кликабельны - при щелчке на них в отдельных вкладках будут открываться полноразмерные картинки ). Обращаю внимание, что везде изображён ОДИН И ТОТ ЖЕ жёсткий диск, только в разных программах. На этом диске параллельно установлены две операционные системы в режиме мультизагрузки - Windows и Linux, которые вполне мирно уживаются на одном компьютере. Каждой из операционок выделено по 3 раздела (разделение не идеальное, но вполне приемлемое ). Внимательно просмотрите, что и как выглядит в каждой из программ.