Дыхательной цепи. Транспорт электронов в процессе окислительного фосфорилирования. дыхательная цепь митохондрий и ее компоненты Субстраты дыхательной цепи

Митохондрии – органеллы клетки, функционирование которых для любой знающего человека четко ассоциируется с производством энергии. Действительно в матриксе митохондрий локализованы различные ферменты, необходимые для окисления субстратов.
Кроме того, внутренняя мембрана митохондрий содержит систему белков-переносчиков электронов, которые обеспечивают терминальный этап окисления субстратов и создают условия для синтеза АТФ.

Эта система белков-переносчиков имеет несколько названий: дыхательная цепь, электрон-транспортной цепи, цепь переноса электронов, редокс-цепь (окислительно-восстановительный цепь). Некоторые из этих названий более точно отражают суть процессов, которые происходят при участии этой цепи, но чаще всего используют более простое название – дыхательную цепь.
Доля белков дыхательной цепи существенная и составляет 30-40% общего белка внутренней мембраны митохондрий.
В составе дыхательной цепи находятся:

  • 1) пиридинзалежни дегидрогеназы (содержат НАД +);
  • 2) флавинзалежни дегидрогеназы (ФАД- и ФМН-содержащие);
  • 3) цитохромы (в, с, с1, а а3);
  • 4) зализосирчани белки;
  • 5) свободный кофермент – убихинон.

Именно такая последовательность компонентов не случайна, а обусловлена величинами их окислительно-восстановительного потенциала (Ео). Эта константа количественно характеризует способность окислительно-восстановительной пары, то есть способность окисленной и восстановленной форм определенной соединения обратно отдавать электрон. Чем ниже (негативный) величина ОВП пары, тем выше ее возможности отдавать электроны, то есть окисляться. И наоборот, пара с более высоким (положительным) значением Ео будет принимать электроны и восстанавливаться. Таким образом, электроны переходят от одной ОВ пары к другой в направлении более позитивного Ео. Такой перенос электронов сопровождается уменьшением свободной энергии.
Все участники цепи переноса электронов структурово объединены в четыре окислительно-восстановительные системы – мультиферменти комплексы I – IV.

Процесс окисления начинается с переноса протонов и электронов с субстрата, что окисляется, на НАД + или ФАД. Это зависит от природы субстрата. Каждый из комплексов способен катализировать определенную часть полной последовательности реакций цепи.
Эти комплексы являются частью внутренней мембраны митохондрий.

Комплекс I – НАДН-дегидрогеназа – флавопротеинами, содержащий ФМН. Этот фермент окисляет НАДН и передает два атома водорода (2Н + 2е-) на коэнзим Q. Комплекс также содержит FeS-белки. Комплекс II – сукцинатдегидрогеназа – флавопротеинами, содержащий ФАД. Этот фермент окисляет сукцинат и транспортирует два атома водорода (2Н + 2е-) на коэнзим Q. В составе комплекса присутствуют FeS-белки.
В матриксе митохондрий также содержатся и другие ФАД-зависимые дегидрогеназы, которые окисляют соответствующие субстраты (глицерол-3-фосфат, ацил-КоА) и далее передают атомы водорода на коэнзим Q.

Потоки атомов водорода объединяются на стадии образования восстановленного КоQН2.
Коэнзим Q является последним компонентом цепи, который способен транспортировать не только протоны, но и электроны (2Н + 2е-). Далее протоны (2Н +) переходят с внутренней поверхности мембраны митохондрии на внешнюю, а электроны (2е-) через цепь цитохромов переносятся на кислород.

Комплекс III – убихинондегидрогеназа – это ферментный комплекс, который включает цитохром b, FeS-белок и цитохром с1. Этот комплекс транспортирует электроны 2е- от восстановленного убихинона КоQН2 на цитохром с (небольшой по размерам водорастворимый белок, содержащийся на внешней стороне внутренней мембраны).

Комплекс IV – цитохром с-оксидаза – ферментный комплекс, состоящий из цитохромов а и а3. Эти ферменты осуществляют последнюю стадию биологического окисления – восстановления электронами (2е-) молекулярного кислорода.
Восстановленный кислород О2- реагирует со свободными протонами (2Н +) матрикса. В результате реакции образуется эндогенная, или метаболическая вода.

Направление переноса протонов и электронов определяют окислительно-восстановительные потенциалы. Для обеспечения спонтанного переноса компоненты окислительно-восстановительного ряда должны располагаться согласно увеличением величин потенциалов.
Редокс-потенциал пары НАД + / НАДН = – 0,32 В, что свидетельствует о высокой способности отдавать электроны. Редокс-потенциал пары кислород / вода = + 0,82 В, что свидетельствует о высокой сродство к электронов.

Общая разница редокс-потенциалов равна 1,14 В. Этому соответствует изменение свободной энергии DG = – 220 кДж / моль. Эта общая величина энергии реакции распределяется на небольшие и более удобные «пакеты», величины которых определяются по разнице окислительно-восстановительных потенциалов соответствующих промежуточных продуктов.

При прохождении по дыхательной цепи пары электронов высвобождается энергия, большая часть которой (60%) рассеивается в виде тепла, а другая аккумулируется в макроергичниз связях АТФ, а именно поглощается в реакции синтеза АТФ-окислительного фосфорилирования.
Это фосфорилирования называется окислительным, так как энергия, необходимая для образования макроэргической связи, генерируется в процессе окисления, то есть движения протонов и электронов по митохондриальной цепи транспорта электронов

Первая такая участок – это НАД ®ФМН, вторая – цитохром b ®цитохром с1, третья – цитохром Аа3 ® ?кисень. Эти участки называют пунктами фосфорилирования. Термин “пункт фосфорилирования” или “участок фосфорилирования” не надо понимать как конкретную стадию, на которой непосредственно происходит образование АТФ. Речь идет о том, что поток электронов через эти три участка цепи каким образом соединенный с образованием АТФ (перепад ООП здесь достаточен для синтеза 1 молекулы АТФ).

При окислении субстратов ФАД-зависимых дегидрогеназ (например, сукцината сукцинатдегидрогеназу) поток электронов от ФАДН2 к кислороду не проходит через первый пункт фосфорилирования. В этих случаях синтезируется на 1 молекулу АТФ менее, есть две. Выход АТФ при окислении различных субстратов и в разных условиях выражают отношением Р / О, которое соответствует количеству молекул неорганического фосфата, включенных в АТФ, в расчете на один атом потребленного (поглощенного) кислорода. Это соотношение называют также коэффициентом фосфорилирования. Таким образом, отношение Р / О при переносе пары электронов от НАДН к кислороду равна 3, а от ФАДН2 к кислороду – 2. При воздействии ингибиторов тканевого дыхания отношение Р / О снижается.

В короткой дыхательной цепи окисляется субстрат, для которых первичным акцептором электронов является флапротеид (отсутствует этап окисления субстрата НАД-ДГ). Вещества короткой цепи: янтарная кислота, активные формы жирных кислот, глицерофосфат).

Первая реакция окисления:

В последующем ФАДН 2 при участии (FeS*) + КоQ, окисляется:

Восстановленный КоQ как и в длиной дыхательной цепи системой цитохромов:

Эти дыхательные цепи могут быть разделены на структурно-функциональные форагменты, которые называются окислительные комплексы. В длинной цепи выделяют 3 комплекса, а в короткой 2.

1. Располагается между НАДН 2 и КоQ и включает в себя ФП и FeS комплекс.

2. КоQН 2 -ДГ (цитохром С-редуктазный комплекс) располагается между КоQ и цС и включает в себя цВ, FeS, белки, цС 1

3. Цитохромоксидазный комплекс – окисляет цС и включает в себя цаа 3

4. Сукцинатдегидрогеназный комплекс включает ФП* и FeS, сукцинатДГ

Каждый дыхательный комплекс может быть выключен из работы дыхательной цепи определенными веществами – ингибиторами.

Первый комплекс – амитал, барбитураты, ротенол

Второй комплекс – малонат

Третий комплекс – антимицин А

Четвертый комплекс – Н 2 S, цианиды, СО

Внутримитохондриальное окисление тесно связано с энергетическим обменом. Энергетический обмен – сбалансированность протекания реакций образования и реакций использования энергии.

Реакции идущие с высвобождением энергии называется экзоргиническими реакциями с поглощением эндорганическими. Основным экзорганическим процессом в организме является транспорт электронов по дыхательной цепи. Начальные компоненты НАД окисленный, НАД восстановленный:

Поэтому в ЦПЭ происходит перемещение электронов с большой энергией, в процессе транспорта электронов энергия высвобождается. Та энергия которая может быть использована на выполнение какой-то работы – свободная энергия . В дыхательной цепи энергия рассчитывается.

ΔF = -23*n*Δе ,

где n- количество переносимых электронов на атом О 2 (2е), Δе – перепад ОВП между началом и концом ЦПЭ.

Δе = 0,82 –(-0,32)=1,14В

ΔF = -23*2*1,14 = -52 ккал/моль

Эта энергия может быть использована организмом на выполнение различных процессов:

  • Механических – сокращение мышц
  • Химических – на синтез новых веществ
  • Осмотических – перенос ионов против градиента концентрации
  • Электрических – возникновение потенциалов в нервной системе

Все организмы в зависимости от энергии, которую они используют делят на два вида: фототрофы – могут использовать энергию солнечного света, хемовары – могут использовать энергию только химических связей особых макроэргических веществ.

Макроэргические вещества – вещества при гидролизе связей которых высвобождается энергия более 5 ккал/моль. К ним относят фосфоенолпируват, креатинфосфат, 1,3-дифосфоглицеринфосфат, ацилы жирных кислот, АТФ (ГТФ, ЦТФ, УЦФ). Среди перечисленных макроэргов центральное место занимает АТФ. АТФ является аккумулятором и источником химической энергии. В молекулярном АТФ заключена энергия на 7,3 ккал/моль (в стандартных условиях) и до 12 ккал/моль в физиологических условиях. Состав АТФ: аденил-рибоза-Н 3 РО 4 - Н 3 РО 4 -Н 3 РО 4 . Синтезируется АТФ из АДФ. Распад АТФ является экзоорганическим процессом. Основным источником энергии для синтеза АТФ является перенос электронов по дыхательной цепи. Присоединение Н 3 РО 4 называется – фосфолирироваием.

Окислительное фосфолирирование

Процесс синтеза АТФ из АДФ и Н 3 РО 4 , за счет энергии транспорта по ЦПЭ. Процессы окисления дыхательной цепи и синтеза АТФ тесно сопряжены. При этом ведущим процессом является транспорт электронов, сопутствующим является фосфолирирование. Участки дыхательной цепи на которых происходит синтез АТФ называются участками сопряжения. Их в длинной цепи три (1, 3, 4 – окислительные комплексы), в короткой дыхательной цепи их два (3,4). Если вещество окисляется в дыхательной цепи, то максимум синтезируются три молекулы АТФ. Эффективность сопряжения окислительного фосфолирирования выражается коэффициентом фосфолирирования. Он показывает сколько молекул Н 3 РО 4 присоединяется к АДФ при переносе двух электронов на один атом кислорода то есть сколько синтезируется молекул АТФ на один атом кислорода. Для длинной цепи коэффициент = 3 для короткой 2.

Механизм окислительного фосфолирирования.

Впервые в тридцатые годы акт синтеза АТФ в процессе окисления был выявлен отечественным биохимиком Энгельгардтом. Основной гипотезой объяснения механизма окислительного фосфолирирования стала хемоосмотическая теория Митчелла. Согласно ей при транспорте электронов по дыхательной цепи возникает протонный потенциал, который и аккумулирует освободившийся при переносе электрона энергию. В последствии протонный потенциал используется для синтеза АТФ. Возникновение протонного потенциала связано непроницаемость для протонов внутренней мембраны митохондрий. В результате транспорта электронов по дыхательной цепи одновременно происходит выталкивание Н + из матрикса в межмембранное пространство. Переносится 6 – 10 Н+.

Биологическая химия Лелевич Владимир Валерьянович

Структурная организация цепи тканевого дыхания

Компоненты дыхательной цепи во внутренней мембране михохондрий формируют комплексы:

1. I комплекс (НАДН-КоQН 2 -редуктаза) – принимает электороны от митохондриального НАДН и транспортирует их на КоQ. Протоны транспортируются в межмембранное пространство. Промежуточным акцептором и переносчиком протонов и электронов являются ФМН и железосерные белки. I комплекс разделяет поток электронов и протонов.

2. II комплекс – сукцинат – КоQ - редуктаза – включает ФАД- зависимые дегидрогеназы и железосерные белки. Он транспортирует электроны и протоны от флавинзависимых субстратов на убихинон, с образованием промежуточного ФАДН 2 .

Убихинон легко перемещается по мембране и передает электроны на III комплекс.

3. III комплекс – КоQН 2 - цитохром с - редуктаза – имеет в своем составе цитохромы b и с 1 , а также железосерные белки. Функционирование КоQ с III комплексом приводит к разделению потока протонов и электронов: протоны из матрикса перекачиваются в межмембранное пространство митохондрий, а электроны транспортируются далее по ЦТД.

4. IV комплекс – цитохром а - цитохромоксидаза – содержит цитохромоксидазу и транспортирует электроны на кислород с промежуточного переносчика цитохрома с, который является подвижным компонентом цепи.

Существует 2 разновидности ЦТД:

1. Полная цепь – в нее вступают пиридинзависимые субстраты и предают атомы водорода на НАД-зависимые дегидрогеназы

2. Неполная (укороченная или редуцированная) ЦТД в которой атомы водорода передаются от ФАД-зависимых субстратов, в обход первого комплекса.

Из книги Пранаяма. Сознательный способ дыхания. автора Гупта Ранджит Сен

Глава 1 Физиология дыхания Многие люди стараются постоянно поддерживать себя в «хорошей форме, занимаясь различными видами спорта, как-то: бег трусцой, плавание, акробатика, некоторые виды игр и так далее. В итоге они, естественно, подвергают себя более высокому ритму

Из книги Сон - тайны и парадоксы автора Вейн Александр Моисеевич

1.3. Шаблоны дыхания Как известно, газообмен между легкими и атмосферным воздухом называется дыханием. А шаблоны дыхания зависят от интенсивности вентиляции (насыщения крови кислородом). Это суммарный объем воздухообмена за единицу времени, и меняется он соответственно

Из книги Здоровье Вашей собаки автора Баранов Анатолий

4.2. Принципы дыхания Для чтения этого параграфа будет очень полезно сначала просмотреть динамику дыхательного механизма. Там объясняются три характерные функции дыхания, движение ребер, грудины и диафрагмы. Одновременное действие этих трех движений является основой

Из книги Служебная собака [Руководство по подготовке специалистов служебного собаководства] автора Крушинский Леонид Викторович

Звенья одной цепи В. П. Данилин решил узнать, как люди оценивают интервалы времени, прошедшие во сне. Он исходил из предположения, что адекватная оценка времени означает во всех случаях, что у человека в памяти фиксируется непрерывная последовательность событий,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Определения частоты дыхания Владелец собаки должен также уметь определить частоту дыхания животного, что немаловажно как для установления заболевания, так и для лечения осложнений органов дыхания.Частоту дыхания можно установить, подсчитывая число вдохов или выдохов

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Нарушение дыхания При нарушении процесса дыхания у собаки резко изменяется состав крови, что неизбежно ведет к изменению функции жизненно важных центров и может закончиться смертью животного.У новорожденных щенят нарушение акта дыхания наблюдается сравнительно часто.

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Возбуждение дыхания Возбуждение дыхания необходимо применять при его расстройстве или отсутствии.Если нарушение дыхания у собаки произошло по причине расстройства мозгового кровообращения (солнечный или тепловой удары), необходимо сделать следующее: а) опрыскивать

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

4. Система органов дыхания Дыханием называется процесс поглощения организмом кислорода и выделения углекислоты. Этот жизненно важный процесс заключается в обмене газами между организмом и окружающим его атмосферным воздухом. При дыхании организм получает из воздуха

Из книги Гены и семь смертных грехов автора Зорин Константин Вячеславович

Из книги Мир животных. Том 6 [Рассказы о домашних животных] автора Акимушкин Игорь Иванович

Глава 4 Эволюция и структурная организация яиц и зародышей Много еще и теперь из нее (Земли) выходит животных, Влагой дождей воплощенных и жаром горячего солнца. Не мудрено, что крупней были твари тогда, да и больше Их порождалось, землей молодой и эфиром взращенных... Ибо

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Из книги Биология. Общая биология. 11 класс. Базовый уровень автора Сивоглазов Владислав Иванович

9.6. Трофические цепи и экология Одним из следствий развиваемого нами трофологического подхода (см. гл. 1) является признание того, что процветание вида во многом определяется его положением в трофической цепи. Это положение обеспечивается эффективностью взаимодействий

Из книги автора

Из книги автора

Лев на золотой цепи Даже царь зверей жил пленником у царей человеческих. В Египте сохранились древние тексты и барельефы, а на них фараоны с ручными львами. На одной из стен дворца в Карнаке изображен Рамзее II (годы его царствования 1324–1258 до нашей эры). Он во главе войска на

Из книги автора

2. «Метаболическая» и «структурная» гипотезы Группу «метаболических» гипотез составляют все те представления о природе стабильности, в которых фигурирует какое-то активирующее вещество: оно может некоторое время находиться вне ДНК, но оно должно быть способно

Из книги автора

6. Популяция как структурная единица вида Вспомните!Что такое популяция?Почему организмы большинства видов живут в природе группами?Вид представляет собой сложную систему внутривидовых групп, складывающуюся в процессе эволюции в определённых условиях. Наиболее

Водород на двух переносчиках (10 молекулах восстановленного НАД и двух молекулах восстановленного ФАД) направляется теперь к внутренней мембране митохондрий. Эта мембрана образует складки, так называемые кристы, увеличивающие площадь ее поверхности. Водород - это топливо. Мы уже отмечали, что при его окислении молекулярным кислородом образуется вода и выделяется энергия:

2Н 2 + 0 2 --------> 2Н 2 0+ Энергия

Часть этой энергии используется для синтеза АТФ из АДФ и неорганического фосфата при окислительном фосфорилировании. Энергия не выделяется вся сразу в одной какой-нибудь реакции. Процесс разбит на ряд небольших этапов и среди них есть такие, на которых выделяется достаточно энергии для синтеза АТФ. Данная последовательность реакций известна как дыхательная цепь. В дыхательной цепи участвует ряд переносчиков водорода и электронов, заканчивается же она кислородом. Водород или электроны переходят от одного переносчика к другому, двигаясь в энергетическом смысле «вниз» до тех пор, пока на конечном этапе они не восстановят молекулярный кислород до воды. На каждом этапе выделяется некоторое количество энергии, причем в нескольких пунктах этот переход сопряжен с синтезом АТФ.

В подписи к рисунку сказано о дыхательной цепи несколько более подробно. На конечном этапе действует медьсодержащий переносчик, называемый цитохро-моксидазой. Цианид (или моноксид углерода) блокирует клеточное дыхание на этом этапе. Цианид связывается с медью, после чего кислород уже не может с ней соединиться.

На рисунке видно, что на каждую молекулу восстановленного НАД , поступающую в дыхательную цепь, при переходе водорода или электронов к кислороду образуются 3 молекулы АТФ. Однако на каждую молекулу восстановленного ФАД образуется всего лишь две молекулы АТФ, потому что восстановленный ФАД поступает в дыхательную цепь на более низком энергетическом уровне.

Общий баланс для дыхательной цепи приведен в таблице.

Суммарное уравнение для дыхательной цепи имеет вид:

12Н 2 + 60 2 ---------> 12Н 2 0 + 34АТФ

Объединим два приведенных ниже уравнения, 1 и 2:


Итак, на каждую молекулу глюкозы, окисленную в процессе аэробного дыхания, образуется 38 молекул АТФ.

Общая схема процесса аэробного дыхания приведена на рисунке.

Окисление жирных кислот

Когда в качестве дыхательного субстрата используются липиды, они сначала гидролизуются до глицерола и жирных кислот, после чего от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты, так что на каждом этапе эта длинная молекула укорачивается на два атома углерода. Двууглеродная ацетильная группа соединяется с коферментом А и образовавшийся ацетил-КоА вступает, как обычно, в цикл Кребса. Из каждой молекулы жирной кислоты извлекается большое количество энергии: при окислении стеариновой кислоты, например, выход АТФ составляет 147 молекул. Неудивительно поэтому, что жирные кислоты - важный источник энергии. Около половины обычных энергетических затрат сердечной мышцы, скелетных мышц (в покое), почек и печени покрывается именно за счет окисления жирных кислот.

Дыхательная цепь является частью процесса окислительного фосфорилирования . Компоненты дыхательной цепи катализируют перенос электронов от НАДН + Н + или восстановленного убихинона (QH 2) на молекулярный кислород. Из-за большой разности окислительно-восстановительных потенциалов донора (НАДН + Н + и, соответственно, QH 2) и акцептора (О 2) реакция является высокоэкзергонической . Большая часть выделяющейся при этом энергии используется для создания градиента протонов и, наконец, для образования АТФ с помощью АТФ-синтазы.

Компоненты дыхательной цепи

Дыхательная цепь включает три белковых комплекса (комплексы I, III и IV ), встроенных во внутреннюю митохондриальную мембрану, и две подвижные молекулы-переносчики - убихинон (кофермент Q) и цитохром с. Сукцинатдегидрогеназа , принадлежащая собственно к цитратному циклу, также может рассматриваться как комплекс II дыхательной цепи. АТФ-синтаза иногда называется комплексом V , хотя она не принимает участия в переносе электронов.

Комплексы дыхательной цепи построены из множества полипептидов и содержат ряд различных окислительно-восстановительных коферментов , связанных с белкам. К ним принадлежат флавин [ФМН (FMN) или ФАД (FAD), в комплексах I и II], железо-серные центры (в I, II и III) и группы гема (в II, III и IV). Детальная структура большинства комплексов еще не установлена.

Электроны поступают в дыхательную цепь различными путями. При окислении НАДН + Н + комплекс I переносит электроны через ФМН и Fe/S-центры на убихинон. Образующиеся при окислении сукцината, ацил-КоА и других субстратов электроны переносятся на убихинон комплексом II или другой митохондриальной дегидрогеназой через связанный с ферментом ФАДН 2 или флавопротеин. При этом окисленная форма кофермента Q восстанавливается в ароматический убигидрохинон . Последний переносит электроны в комплекс III , который поставляет их через два гема b, один Fe/S-центр и гем с 1 на небольшой гемсодержащий белок цитохром с . Последний переносит электроны к комплексу IV, цитохром с-оксидазе. Цитохром с-оксидаза содержит для осуществления окислительно-восстановительных реакций два медьсодержащих центра (Cu A и Cu B) и гемы а и а 3 , через которые электроны, наконец, поступают к кислороду . При восстановлении О 2 образуется сильный основной анион О 2- , который связывает два протона и переходит в воду. Поток электронов сопряжен с образованным комплексами I, III и IV протонным градиентом .

Организация дыхательной цепи

Перенос протонов комплексами I, III и IV протекает векторно из матрикса в межмембранное пространство. При переносе электронов в дыхательной цепи повышается концентрация ионов H + , т. е. понижается значение рН. В интактных митохондриях по существу только АТФ-синтаза позволяет осуществить обратное движение протонов в матрикс. На этом основано важное в регуляторном отношении сопряжение электронного переноса с образованием АТФ.

Как уже упоминалось, все комплексы с I по V интегрированы во внутренней мембране митохондрий, тем не менее обычно они не контактируют друг с другом, так как электроны переносятся убихиноном и цитохромом с. Убихинон благодаря неполярной боковой цепи свободно перемещается в мембране. Водорастворимый цитохром с находится на внешней стороне внутренней мембраны.

Окисление НАДН (NADH) комплексом I происходит на внутренней стороне мембраны, а также в матриксе, где происходит также цитратный цикл и β-окисление - самые важные источники НАДН. В матриксе протекают, кроме того, восстановление O 2 и образование АТФ (ATP). Полученный АТФ переносится по механизму антипорта (против АДФ) в межмембранное пространство, откуда через порины проникает в цитоплазму.