Проволочный плазменный распылитель для наплавки. Плазменная наплавка: оборудование и технология процесса. Технология описываемой наплавки и ее тонкости

Технологический процесс нанесения покрытий при расплавлении как присадочного материала (прутков, проволок, трубок, стержней, лент, порошков), так и поверхностного слоя наплавляемой металлической поверхности. В зависимости от вида источника нагрева наплавка может производиться при помощи теплоты газового пламени (газопламенная), электрической дуги (электродуговая в среде защитного газа, под флюсом и др.), расплавленного шлака (электрошлаковая), концентрированных источников энергии - сжатой дуги (плазменная), лазерного луча (лазерная) и др. методами.

Назначение

Изготовление деталей с износо- и коррозионностойкими свойствами поверхности, а также восстановление размеров изношенных и бракованных деталей, работающих в условиях высоких динамических, циклических нагрузок или подверженных интенсивному изнашиванию.

Выбор способа

Выбор и использование конкретного способа наплавки определяется условиями производства, количеством, формой и размерами наплавляемых деталей, допустимым перемешиванием наплавленного и основного металла, технико-экономическими показателями, а также величиной износа. Выбор типа материала покрытия производится в соответствии с условиями эксплуатации деталей. В качестве присадочного материала при наплавке деталей во многих случаях наиболее эффективно использование порошков, которые технологичны в изготовлении и обеспечивают получение химического и фазового состава покрытия в широких пределах.

Достоинства

  • нанесение покрытий значительных толщин;
  • отсутствие ограничений по размерам наплавляемых поверхностей;
  • получение требуемых размеров восстанавливаемых деталей путем нанесения материала того же состава, что и основной металл;
  • использование не только для восстановления размеров изношенных и бракованных деталей, но и ремонта изделий за счет залечивания дефектов (раковин, пор, трещин);
  • низкое тепловложение в основной металл при плазменной наплавке;
  • многократное проведение процесса восстановления и, следовательно, высокая ремонтоспособность наплавляемых деталей;
  • высокая производительность;
  • относительная простота и малогабаритность оборудования, легкость автоматизации процесса.

Недостатки

  • возможность изменения свойств наплавленного покрытия из-за перехода в него элементов основного металла;
  • изменение химического состава основного и наплавленного металла вследствие окисления и выгорания легирующих элементов в околошовной зоне;
  • возникновение повышенных деформаций за счет термического воздействия;
  • образование больших растягивающих напряжений в поверхностном слое детали, достигающих 500 МПа и снижение характеристик сопротивления усталости;
  • возможность структурных изменений в основном металле, в частности, образование крупнозернистой структуры, новых хрупких фаз;
  • возможность возникновения трещин в наплавленном металле и зоне термического влияния и, как следствие ограниченный выбор сочетаний основного и наплавленного металлов;
  • наличие больших припусков на механическую обработку, приводящих к существенным потерям металла наплавки и повышению трудоемкости механической обработки наплавленного слоя;
  • требования преимущественного расположения наплавляемой поверхности в нижнем положении;
  • использование в отдельных случаях предварительного нагрева и медленного остывания наплавляемого изделия, что увеличивает трудоёмкость и длительность процесса;
  • трудность наплавки мелких изделий сложной формы.

Плазменная наплавка

Плазменными называются производственные технологии, использующие воздействие плазмы (четвертого агрегатного состояния вещества) на различные материалы с целью изготовления, обслуживания, ремонта и/или эксплуатации изделий. При плазменной наплавке нагрев детали и присадочного материала осуществляется электродуговой плазмой, которая генерируется дугой прямого действия сжатой плазмообразующим соплом и плазмообразующим газом или дугой косвенного действия, горящей между электродом и плазмообразующим соплом (между электродом и присадочной проволокой) или двумя дугами одновременно.

Плазменно-порошковая наплавка

При плазменно-порошковой наплавке применяется как процесс, использующий одну дугу прямого действия, так и двухдуговой РТА процесс (plasma transferred arc), где действует одновременно дуга прямого действия, горящая между электродом и изделием, и дуга косвенного действия, горящая между электродом и плазмообразующим соплом (рис. 1). В связи с тем, что традиционно процесс нанесения покрытий с использованием косвенной дуги называется плазменным напылением, а с применением дуги прямого действия - плазменной наплавкой, PTA процесс получил название плазменная наплавка-напыление.

Рис. 1. Схемы плазмотронов для сварки (а), наплавки (а, б), напыления (в, г), финишного плазменного упрочнения (г), закалки (а – без ПП), где ПГ – плазмообразующий газ, ЗГ – защитный газ, ТГ – транспортирующий газ, ДГ – фокусирующий газ, ПП – присадочная проволока; П – порошок или реагенты для упрочнения

Процесс плазменной наплавки-напыления можно охарактеризовать как метод нанесения порошковых покрытий толщиной 0,5-4,0 мм с регулируемым вводом тепла в порошок и изделие плазмотроном с двумя горящими дугами прямого и косвенного действия. Косвенная (пилотная, дежурная) дуга используется для расплавления присадочного порошка, а основная дуга - для оплавления поверхностного слоя детали и поддержания необходимой температуры порошка на детали. Раздельное регулирование параметров основной и косвенной дуги обеспечивает эффективное расплавление порошка при минимальном нагреве поверхности детали.

Основные преимущества плазменной наплавки-напыления:


  • минимальное термическое воздействие на основной металл;
  • минимальное перемешивание основного и наплавленного металла;
  • высокий коэффициент использования присадочного материала;
  • незначительные припуски на механическую обработку;
  • минимальные деформации наплавленной детали;
  • равномерность высоты наплавленного слоя;
  • высокая стабильность процесса.

В табл. 1 представлены отличительные характеристики плазменной наплавки-напыления от ближайших аналогов. Так покрытия, наносимые плазменной наплавкой с использованием дуги прямого действия, обеспечивают чрезмерное оплавление основного металла и его перемешивание с присадочным материалом, а покрытия, наносимые плазменным напылением, не являются беспористыми и ограничены толщиной порядка 1 мм (за пределами которой возможно растрескивание вследствие высоких внутренних напряжений).

Таблица 1. Основные свойства покрытий, наносимых плазменными методами

Вид плазмотронов для процесса плазменной наплавки-напыления представлен на рис. 2.

Рис. 2. Плазмотроны для плазменной наплавки-напыления

Сравнительные характеристики всех производственных плазменных технологий приведены в табл. 2 (положительные стороны процессов выделены серой заливкой ячеек, а наибольшие преимущества отмечены жирным шрифтом), а на рис. 3 представлены варианты их использования.

Таблица 2. Характеристики плазменных технологий

Характеристика Сварка Наплавка Напыление ФПУ Закалка
Схема обработки
Толщина обрабатываемых деталей, мм 0,5 - 10 более 2 любая любая более 3
Толщина покрытия (или глубина закалки без оплавления), мм - большая (1-4) средняя (0,1-1,0) малая (0,0005-0,003) средняя (0,3-1,5)
Прочность соединения покрытия с основой - высокая понижен-ная высокая
Интегральная температура основы, оС высокая (200-1000) высокая (200-1000) низкая (100-200) низкая (100-200) низкая (200-300)
Термическая деформация изделия пониженная есть нет нет есть
Структурные изменения основы есть значительные нет минимальные есть
Предварительная подготовка поверхности основы очистка от окалины и органики абразивно-струйная обработка очистка от органики (обезжиривание) очистка от окалины и органики
Пористость покрытия - нет есть минимальная
Сохранение класса шероховатости поверхности нет нет да да
Поверхность может иметь повышенную твердость да да да да
Покрытие может быть износостойким да да да да
Покрытие может быть жаростойким (до 1000оС) да да да
Покрытие может быть диэлектрическим нет да да
Расходы на материал покрытия (присадки) пониженные высокие средние низкие нет
Возможность сохранения высокой твердости основы нет ограниченная да да да (вне ЗТВ)
Возможность обработки острых кромок да (с доп. механи-ческой обработ-кой) как правило – нет да да (ограни-ченно)
Возможность эксплуатации покрытий при ударных нагрузках да нет да да
Необходимость дополнительной механической обработки покрытий как правило - да как правило - да нет
Экологическая чистота технологии высокая средняя низкая высокая высокая
Затраты на оборудование производственного участка средние средние высокие низкие низкие
Отходы технологии низкие средние значительные нет нет
Возможность проведения техпроцесса вручную и автоматически в основном - автоматически да да да только автоматически
Возможность интеграции технологии без изменения других техпроцессов нет нет нет да да

Плазменная наплавка наиболее часто используется для нанесения покрытий на клапана автомобильных и судовых двигателей, различные экструдеры и шнеки, детали арматуры и другие детали. Экономическая эффективность плазменной наплавки определяется повышением долговечности наплавленных деталей при снижении расхода используемых порошковых материалов, затрат на их обработку, экономии газа.

Рис. 3. Процесс плазменной наплавки

Ссылка на книги и статьи

  • Соснин Н.А., Ермаков С.А., Тополянский П.А. Плазменные технологии. Руководство для инженеров. Изд-во Политехнического ун-та. СПб.: 2013. - 406 с.
  • Тополянский П.А., Тополянский А.П. Прогрессивные технологии нанесения покрытий - наплавка, напыление, осаждение. РИТМ: Ремонт. Инновации. Технологии. Модернизация. 2011, № 1 (59). - С. 28-33
  • Ермаков С.А., Тополянский П.А., Соснин Н.А. Оценка качества процесса плазменной наплавки. Сварка и диагностика. 2015. № 3. - C. 17-19
  • Ермаков С.А., Тополянский П.А., Соснин Н.А. Оптимизация плазменной порошковой наплавки двухдуговым плазмотроном. Ремонт. Восстановление. Модернизация. 2014. № 2. - С. 19-25

Широкое применение в настоящее время находят плазменные способы наплавки. При плазменной наплавке (ПН) в качестве источника нагрева используется плазма, которая представляет собой вещество в сильно ионизированном состоянии. В 1 см 3 плазмы содержится 10 9 – 10 10 и более заряженных частиц. Практически в любом дуговом разряде образуется плазма. Основным методом получения плазмы для технологических целей является пропускание газовой струи через электрическую дугу, расположенную в узком медном канале. При этом в связи с отсутствием возможности расширения столба дуги возрастает число упругих и неупругих соударений заряженных частиц, т. е. увеличивается степень ионизации, возрастает плотность и напряжение дуги, что вызывает повышение температуры до 10000 – 15 000 о С.

Наличие у плазменных горелок стабилизирующего водоохлаждаемого канала сопла является основным отличием от обычных горелок, применяемых при сварке в среде защитных газов неплавящимся электродом.

При упрочнении и восстановлении деталей в зависимости от их формы, условий работы применяют несколько разновидностей плазменной наплавки, отличающихся типом присадочного металла, способом его подачи на упрочняемую поверхность и электрическими схемами подключения плазмотрона.

При плазменной наплавке по отношению к наплавляемой детали применяют два вида сжатой дуги: прямого и косвенного действия. В обоих случаях зажигание дуги плазмотрона и осуществление процесса наплавки выполняют комбинированным способом: вначале между анодом и катодом плазмотрона с помощью осциллятора возбуждают дугу косвенного действия.

Дуга прямого действия образуется при соприкосновении малоамперной (40 – 60 А) косвенной дуги с токоведущей деталью. В зону дуги могут подаваться материалы: нейтральная или токоведущая проволока, две проволоки (рис. 8.8), порошок, порошок одновременно с проволокой.

Метод косвенной дуги заключается в том, что между дежурной дугой и токоведущей проволокой образуется прямая дуга, продолжение которой является косвенной независимой дугой по отношению к электрически нейтральной детали.

Высокую производительность (до 30 кг/ч) обеспечивает плазменная наплавка с подачей в ванну двух плавящихся электродов 1 (рис.8.8), подключенных последовательно к источнику питания и нагреваемых почти до температуры плавления. Защитный газ подается через сопло 2.

Универсальный способ плазменной наплавки – наплавка с вдуванием порошка в дугу (рис.8.9). Горелка имеет три сопла: 3 – для формирования плазменной струи, 4 – для подачи присадочного порошка, 5 – для подачи защитного газа. Один источник тока служит для зажигания дуги осциллятором 2 между электродом и соплом, а другой источник тока формирует плазменную дугу прямого действия, которая оплавляет поверхность изделия и плавит порошок, подающийся из бункера 6 потоком газа. Изменяя ток обеих дуг устройствами 1, можно регулировать количество теплоты, идущей на плавление основного металла и присадочого порошка и, следовательно, долю металла в наплавленном слое.


Рис. 8.9 . Плазменная порошковая наплавка

Увеличение производительности процесса плазменной наплавки во многом зависит от эффективности нагрева порошка в дуге. Температура, которую приобретают частицы порошка в дуге, определяется интенсивностью и продолжительностью нагрева, зависящими от параметров плазмы, условия ввода порошка в дугу, технических параметров процесса наплавки. Наибольшее влияние на нагрев порошка оказывают ток дуги, размер частиц и расстояние между плазмотроном и анодом.

Основные достоинства метода ПН: высокое качество наплавленного металла; малая глубина проплавления основного металла при высокой прочности сцепления; возможность наплавки тонких слоев; высокая культура производства.

Основные недостатки ПН: относительно невысокая производительность; необходимость в сложном оборудовании.

Является наиболее прогрессивным способом восстановления изношенных деталей машин и нанесения износостойких покрытий (сплавов, порошков, полимеров,…) на рабочую поверхность при изготовлении деталей.

Плазмой называется высокотемпературный сильно ионизированный газ, состоящий из молекул, атомов, ионов, электронов, световых квантов и др.

При дуговой ионизации газ пропускают через канал и создают дуговой разряд, тепловое влияние которого ионизирует газ, а электрическое поле создает направленную плазменную струю. Газ может ионизироваться также под действием электрического поля высокой частоты. Газ подается при 23 атмосферах, возбуждается электрическая дуга силой 400-500 А и напряжением 120-160 В Ионизированный газ достигает температуры 10-18 тыс. о С, а скорость потока - до 15000 м/сек. Плазменная струя образуется в специальных горелках - плазмотронах. Катодом является неплавящий вольфрамовый электрод.

В зависимости от схемы подключения анода различают (см.рис.1) :

1. Открытую плазменную струю (анодом является деталь или пруток). В этом случае происходит повышенный нагрев детали. Используется эта схема при резке металла и для нанесения покрытий.

2. Закрытую плазменную струю (анодом является сопло или канал горелки). Хотя температура сжатой дуги на 20 …30% в этом случае выше, но интенсивность потока ниже, т.к. увеличивается теплоотдача в окружающую среду. Схема используется для закалки, металлизации и напыливания порошков.

3. Комбинированная схема (анод подключается к детали и к соплу горелки). В этом случае горят две дуги, Схема используется при наплавке порошком.

Рис.1. Схема плазменной сварки открытой и закрытой плазменной струей .

Наплавку металла можно реализовать двумя способами:

1-струя газа захватывает и подает порошок на поверхность детали;

2-вводится в плазменную струю присадочный материал в виде проволоки, прутка, ленты.

В качестве плазмообразующих газов можно использовать аргон, гелий, азот, кислород, водород и воздух. Наилучшие результаты сварки получаются с аргоном.

Достоинствами плазменной наплавки являются:

1. Высокая концентрация тепловой мощности и возможность минимальной ширины зоны термического влияния.

2. Возможность получения толщины наплавляемого слоя от 0,1 мм до нескольких миллиметров.

3. Возможность наплавления различных износостойких материалов (медь, пластмасса) на стальную деталь.

4. Возможность выполнения плазменной закалки поверхности детали.

5. Относительно высокий К. П. Д. дуги (0.2-0.45).

Очень эффективно использовать плазменную струю для резки металла, т.к. газ из-за высокой скорости очень хорошо удаляет расплавленный металл, а из-за большой температуры он плавится очень быстро.

Установка (рис. 2.) состоит из источников питания, дросселя, осциллятора, плазменной головки, приспособлений подачи порошка или проволоки, системы циркуляции воды и т.д.

Для источников питания важно выдержка постоянным произведение J U, т.к. мощность определяет постоянство плазменного потока. В качестве источников питания применяют сварочные преобразователи типа ПСО - 500. Мощность определяется длиной столба и объемом плазменной струи. Можно реализовать мощности свыше 1000 кВт.

Подача порошка осуществляется с помощью специального питателя, в котором, вертикально расположенный, ротор лопатками подает порошок в струю газа. В случае использования сварочной проволоки подача ее выполняется аналогично как и при наплавке под слоем флюса.

Путем колебания горелки в продольной плоскости с частотой 40-100 мин -1 за один проход получают слой наплавленного металла шириной до 50 мм. У горелки имеется три сопла: внутреннее для подачи плазмы, среднее для подачи порошки и наружное для подачи защитного газа.

Рис.2. Схема плазменного наплавления порошка .

При наплавке порошков реализуется комбинированная дуга, т. е. одновременно будут гореть открытая и закрытая дуги. Регулировкой балластных сопротивлений можно регулировать потоки мощности на нагрев порошка и на нагрев и оплавление металла детали. Можно добиться минимального проплавления основного материала, следовательно будет небольшая тепловая деформация детали.

Поверхность детали необходимо готовить к наплавке более тщательно чем при обычной электродуговой или газовой сварке, т.к. при этом соединение происходит без металлургического процесса, поэтому посторонние включения уменьшают прочность наплавленного слоя. Для этого производится механическая обработка поверхности (проточка, шлифование, пескоструйная обработка,...) и обезжиривание. Величину мощности электрической дуги подбирают такой, чтобы сильно не нагревалась деталь, и чтобы основной металл был на грани расплавления.

Одним из основных методов повышения надежности и ресурса стеклоформ, клапанов, запорной арматуры является плазменная наплавка (Plasma transfer Arc, PTA).

Использование метода плазменно-порошковой наплавки позволяет существенно повысить качество наплавляемых деталей, увеличить производительность и придать особые свойства наплавляемой поверхности.

Выбор в сторону метода PTA крупнейшими производителями и потребителями запорной арматуры, формокомплектов для производства стекла, клапанов - подтверждает выгоды использования метода плазменно-порошковой наплавки, поскольку получаемый наплавленный слой с повышенными свойствами позволяет существенно повысить сроки службы деталей и узлов, продлить межремонтные интервалы и сократить затраты на капитальный и текущий ремонт.

Установки плазменной наплавки KSK предназначены для наплавки деталей от колец и клапанов до чистовых стекольных форм и деталей запорной арматуры.

  • Повышение конкурентоспособности: предлагаемые нами методы применяются всеми ведущими зарубежными производителями арматуры, стекла, клапанов, валков.
  • Увеличение межремонтных циклов: срок эксплуатации деталей увеличивается от 3 до 10 раз.
  • Сокращение простоев: уменьшение количества остановок, и, соответственно, меньше времени на отладку оборудования для выхода на нужный режим.

Профессиональное оборудование для наплавки

Компания ООО «Метсол» представляет вниманию потенциальных заказчиков автоматические установки плазменной наплавки от чешского производителя KSK. Оборудование предназначено для проведения наплавки уплотнительных и рабочих поверхностей, включая стеклоформы, седла запорно-регулирующей арматуры, кольца клапана, наплавки внутренних диаметров. Конструкция плазмотронов подходит для изделий различной формы и способов наплавки. Разработчики предлагают 7 типов плазматронов, гарантирующих даже при максимальном режиме работе эффективное охлаждение установки. В процессе работы допускается корректировка настроек сварочных программ оператором через сенсорный экран на панели пульта. Это позволяет уменьшить в тестовых образцах процент брака.

Качественный подход

Одним из направлений деятельности компании ООО «Метсол» является поставка, установка и наладка заказчикам установки плазменной наплавки в Екатеринбурге. Опытные специалисты эффективно решают производственные задачи на высоком профессиональном уровне. Сервисная служба владеет современными знаниями в области сварочных технологий и металлообработки. Решив купить автоматическую установку плазменной наплавки вы получите:

  • Повышение конкурентоспособности на уровне ведущих зарубежных производителей арматуры, стекла, клапанов, валков.
  • Увеличение межремонтных интервалов: срок эксплуатации деталей увеличивается от 3 до 10 раз.
  • Сокращение простоев и количества остановок.

Порошковая металлургия, сварка и технология материалов.

Как показывает международная практика, для стран с ограниченными природно-сырьевыми и энергетическими ресурсами во многих случаях перспективными, экономически выгодными и предпочтительными взамен новых деталей машин, является их восстановление.

Основными причинами выхода из строя являются изнашивание, воздействие коррозионных сред, высоких температур и механических нагрузок. Поскольку процессы разрушения, как правило, начинаются с поверхности целесообразно как при восстановлении, так и при изготовлении новых быстроизнашиваемых деталей нанесение на них многофункциональных защитных покрытий с высокими эксплуатационными свойствами.

При этом оптимальными являются такие технологические решения, которые позволяют повысить срок службы быстроизнашиваемой детали до срока службы узла или машины.

В подавляющем большинстве случаев основной причиной повреждения деталей является изнашивание.

Безусловная целесообразность и экономическая эффективность проведения работ по восстановлению деталей нанесением покрытий и, следовательно, по повышению их износостойкости, обусловлена достигаемой экономией материалов, топливно-энергетических ресурсов, трудозатрат, минимизацией экономической нагрузки на окружающую среду.

Поскольку величина износа, вызывающая необходимость восстановления изношенной детали, может быть различной (от нескольких мкм до мм), следует выбирать наиболее рациональный способ нанесения, материал покрытия и нужное оборудование для его нанесения.

Покрытия на металлической, полимерной, неорганической основе могут быть получены различными способами наплавки, напыления, химико-термической обработки, химического и электрохимического осаждения, физическими методами, нанесением из газовой фазы, имплантацией, комбинированными и другими методами.

В практике ремонтных производств по восстановлению деталей нанесением покрытий на долю наплавок приходится около 77%, электроконтактного припекания – 6%, гальванических способов – 4%, заливки жидким металлом – 2%, восстановления полимерами - 4%, других способов – 5%.

Рассмотрим суть основных наиболее перспективных для применения в практике способов нанесения покрытий, их достоинства и недостатки, наиболее эффективные области применения.

Наплавка

Это такой метод, при котором внешним тепловым источником (газовое пламя, электрическая дуга, плазма, лазерный или электронный луч, и др.) расплавляют наносимый материал и наносят его на подплавленную поверхность основы.

Наплавленные покрытия беспористы, имеют прочность сцепления соизмеримую с прочностью основы, а износостойкость и другие эксплуатационные свойства (коррозионная, эрозионная, кавитационная, жаростойкость и др.) могут быть значительно выше, чем у основы.

Ведущее место для восстановления изношенных поверхностей наплавка занимает благодаря своей универсальности.

В зависимости от степени механизации и автоматизации процесса, вида применяемого источника тепла, характера легирования, вида наплавляемого материала (порошок, проволока, лента, паста), характера защиты покрытия от кислорода, азота, воздуха, вида применяемого тока (постоянный, переменный, импульсный, специальной характеристики), вида электрода (плавящийся, неплавящийся), полярность электрода при постоянном токе (прямая, косвенная), режима (стационарный, нестационарный) различают ряд способов наплавки.

Наиболее распространены для восстановления деталей способы дуговой наплавки (под слоем флюса, в среде защитных газов, вибродуговая) и плазменная наплавка (табл. 2.1.)

Перед наплавкой очищают и прокаливают для удаления влаги наплавочные материалы, очищают поверхности деталей, при необходимости нагревают их.


Таблица 2.1

Основные показатели способов наплавки

Способ Толщина слоя, мм Производительность, кг/ч Прочность соединения, МПа
Дуговая самозащитной проволокой 0,5…3,5 1,0..3,0
Дуговая под слоем флюса 1,0…5,0 0,3..3,0
Дуговая в среде диоксида углерода 0,5…3,5 1,5…4,5
Дуговая в среде аргона 0,5…2,5 0,3…3,6
Вибродуговая 0,5…1,5 0,3…1,5
Газопламенная 0,5…3,5 0,15…2,0
Плазменная(порошковая) 0,5…5,0 1…12
Электрошлаковая >10 до 150

2.1 Ручная дуговая наплавка выполняется электродами с толстым покрытием и тогда, когда применение механизированных способов невозможно или нецелесообразно.

Для минимального проплавления основы наплавку ведут при минимально возможных силе тока и напряжении и электрод наклоняют в сторону, обратную направлению наплавки. Наплавку выполняют электродами диаметром 2…6 мм на постоянном токе 80…300 А обратной полярности с производительностью 0,8…3,0 кг/ч. При необходимости при наплавке различных сталей, никеля, меди и их сплавов производят предварительный подогрев наплавляемых деталей до 100…300 °С.

Способ широко распространен в ремонтном производстве Республики Беларусь.

2.2 Дуговая наплавка под флюсом , при которой электрическая дуга горит между голым электродом(проволокой) и наплавляемым изделием под слоем 10…40 мм сухого гранулированного флюса с размерами зерен 0,5…3,5 мм (рис. 2.1)

Рисунок 2.1 – Схема наплавки под слоем флюса

1-бункер с флюсом; 2-электрод; 3-оболочка расплавленного флюса; 4-газопаровой пузырь; 5‑наплавленный слой; 6-шлаковая корка; е -величина смещения электрода с зенита; ω д ‑угловая частота вращения детали

В зону наплавки подают электродную сплошную или порошковую проволоку (ленту) и флюс. К детали и электроду подают постоянный ток обратной полярности. Наплавка плоских поверхностей ведется так называемым сварочно-наплавочным трактором, который перемещается по заданной траектории с заданными параметрами перемещения и подачи наплавочной проволоки. (см. лаб. работу №5)

При наплавке цилиндрических поверхностей электрод смещают с зенита в сторону противоположную вращению примерно на 10% диаметра наплавляемой детали (см рис. 2.1). Электрод должен составлять угол с нормалью к поверхности 6…8°. Подачу флюса в зону наплавки регулируют открытием шибера. При горении дуги одновременно плавятся электродная проволока, поверхность детали и флюс. Дуга с каплями металла оказывается в объеме газов и паров, ограниченном жидким пузырем из расплавленного флюса. Этот пузырь обволакивает зону наплавки и изолирует ее от кислорода и азота воздуха. Вследствие перемешивания наплавленный под флюсом металл состоит из расплавленного присадочного и переплавленного основного металла.

Флюс, температура плавления которого на 100… 150 °С ниже, чем наплавочного материала, в значительной степени обеспечивает получение качественного покрытия, выполняя целый ряд функций:

Стабилизирует горение дуги

Защищает расплав от воздействия кислорода и азота воздуха

Очищает расплав от включений и раскисляет его

Легирует покрытие

Образует теплоизоляционный слой, замедляющий процесс затвердевания металла наплавки

В состав плавленых флюсов (ГОСТ 9087-81) АН-1…АН-30, АН-348А, ОСЦ-45, ФЦ-9, ФЦЛ-2 входят SiO 2 , MnO, Al 2 O 3 , CaO, MgO, K 2 O 4 , Na 2 O,Fe 2 O 3 , CaF 2 , FeO.

Керамические флюсы дополнительно содержат ферросплавы, CaCO 3 , легирующие элементы. Легирование проводят чаще всего комбинированно (через флюс и проволоку).

Для автоматической электродуговой наплавки под слоем флюса используют следующее оборудование:

Источники питания (выпрямители, трансформаторы, преобразователи типа ВДУ-504, ТДФ-1001, ПСГ-500) с пологопадающей или жесткой внешней характеристикой

Вращатели (типа УД140, ОКС-11200 и др.)

Сварочные тракторы(типа АДФ-1002) и

Подвесные головки (типа А-1416)

В мощных автоматах предусмотрены устройства для автоматической уборки нерасплавившегося флюса.


Таблица 2.2 – Режимы наплавки под слоем флюса цилиндрических деталей.

D, мм I, А U, В V H , м/мин V n , м/мин e, мм S, мм h, мм
d э = 1,2…1,6 мм d э = 2,0…2,5 мм
50…60 120…140 140…160 26…28 16…20 3,0 1,5…2,5
65…75 150…170 180…220 16…28 3,5…4,0
80…100 180…200 230…280 28…30 16…30 4,0 2,0…3,0
150…200 230…250 300…350 30…32 16…32 5,0
250…300 270…300 350…380 16…35 6,0

Условные обозначения: D - диаметр детали; h – высота слоя; I,U – напряжение и сила тока; V H - скорость наплавки, м/мин; V n – скорость подачи электродного материала, м/мин; e – смещение электрода с зенита, мм; d э – диаметр и вылет электрода, мм.

Преимуществами автоматической электродуговой наплавки под слоем флюса являются:

Повышенная в 6…8 раз по сравнению с ручной электродуговой наплавкой производительность труда при меньших в 2 раза энергозатратах

Повышенное качество наплавленного металла благодаря легированию и рациональной организации тепловых процессов

Возможность наплавки покрытий более 2 мм толщиной

Меньший угар, потери на разбрызгивание и расход присадочного материала

Лучшие условия труда и экологичность

Разновидностями наплавки под слоем флюса являются многоэлектродная наплавка, наплавка лежачим электродом, наплавка по слою порошка.

Весьма эффективными при этом способе является использование порошковых проволок, лент, шнуровых материалов.

Технологии наплавки под флюсом широко применяют на ряде передовых предприятий Беларуси, в технических университетах (БНТУ, БРУ), институтах НАН Беларуси.

2.3 Электрошлаковая наплавка (ЭШН) отличается тем, что на нагретой поверхности детали образуется ванна расплавленного флюса, в которую введен электрод, а к детали и электроду приложено напряжение (рис. 2.2). Процесс наплавки начинают на технологической пластине, которую затем после начала затвердевания покрытия удаляют. В ванну помещают флюс и электрод. Зажигают дугу между электродом и технологической пластиной. Флюс расплавляется, образуя жидкую ванну, при соприкосновении электрода с которой дуга гаснет. Ток, проходя через жидкий шлак выделяет тепло, достаточное для плавления шлака и электродного металла(температура шлаковой ванны выше чем температура плавления присадочного электродного материала). Присадочный материал расплавляется, проходя через шлак, очищается, оседает и формирует между поверхностями водоохлаждаемого кристаллизатора и технологической пластины покрытие.

Для поддержания процесса включают подачу наплавочного материала, открывают дозатор с флюсом, сообщают движение детали. Поскольку обычно толщина слоя наплавки превышает 12…14 мм ЭШН целесообразна для получения биметаллических изделий или восстановления больших партий деталей с износом более 10 мм (опорные катки гусеничных машин, звенья гусениц, работающие в агрессивной среде, инструмент и др.)

Рисунок 2.2 - Схема электрошлаковой наплавки:

1 ‑ кристаллизатор; 2 ‑ шлаковая ванна; 3 ‑ электрод; 4 ‑ мундштук; 5 ‑ дозатор легирующих добавок; 6 ‑ крупногабаритные диски; 7 ‑ восстанавливаемая деталь; 8 ‑ оправка; 9 ‑ покрытие

Различают ЭШН электродными проволоками, лентами, порошковым присадочным материалом, одно- или многоэлектродную, с плавящимся электродом.

Преимущества ЭШН:

Максимальная из всех способов наплавки производительность (до 150 кг/г)

В 2-4 раза меньше энерговложение, чем при ручной дуговой наплавке и в 1,5 раза меньше, чем при наплавке под слоем флюса.

Минимальный расход флюса и угар легирующих элементов, отсутствие разбрызгивания шлака и наплавочного материала

Максимальная чистота по вредным примесям и трещиностойкость

Например, при восстановлении опорных катков тракторов оптимален следующий режим: напряжение тока 36…40В, сила тока 800…900 А, скорость подачи проволоки 3…3,5 м/мин, глубина шлаковой ванны 80 мм, «сухой» вылет электродов 150 мм, количество электродов 2, диаметр проволоки 3 мм, проволока Св08, флюс АН-348А или АН-8, скорость подачи легирующей добавки (сормайта) 50…85 г/мин. Покрытия обеспечивают повышение износостойкости в 1,5…1,9 раза по сравнению с новыми катками.

ЭШН ведут с помощью специальных установок (например, ОКС-7755 ГОСНИТИ), специальных сварочных аппаратов или источников постоянного или переменного тока с жесткой внешней характеристикой.

В БНТУ разработана ресурсосберегающая технология ЭШН отходов легированных сталей, обеспечивающая наилучшее качество и свойства металла на уровне мировых аналогов.

Оборудование для ЭШН и подобные технологии имеются в институтах НАН Беларуси, в том числе в Институте технологии металлов (г. Могилев).


2.4 Наплавка в среде защитного газа заключается в том, что в зону электрической дуги подают под давлением защитный газ, в результате чего столб дуги и наплавляемый жидкий металл изолируются от азота воздуха и кислорода.

В качестве защитных используют инертные газы (аргон, гелий, и их смеси), активные газы (диоксид углерода, азот, водород, водяной пар и их смеси) и смеси инертных и активных газов (например, 85% аргона и 15% диоксида углерода). Наибольшее применение для восстановления деталей получила механизированная наплавка в среде диоксида углерода плавящимся электродом. Электродом являются наплавочные проволоки Св08Г2С, Св10Г2С, Св-18ХГСА, Ни-30ХГСА диаметром 0,5…2,0 мм и порошковые проволоки ПП-Р18Т, ПП-Р9Т, ПП-Х2В8Т и другие.

Рисунок 2.3 – Схема наплавки в среде диоксида углерода:

1 – мундштук; 2 – электродная проволока; 3 – горелка; 4 – наконечник; 5 – сопло горелки; 6 – электрическая дуга; 7 – сварочная ванна; 8 – покрытие; 9 – восстанавливаемая деталь

Например, наплавку ответственных деталей с требуемой твердостью 45…55 HRC проводят проволокой Hи-30ХГСФ диаметром 1,2…1,8 мм с последующей термической обработкой поверхностей – закалкой ТВЧ. Режим наплавки следующий напряжение тока 18…22В, сила тока 120…180А, скорость наплавки 25…50 м/ч, шаг наплавки 2,5…8,5 мм/об, вылет электродной проволоки 15…20 мм, скорость подачи проволоки 90…180 м/ч, расход диоксида углерода 10…15 л/мин.

По сравнению с автоматической наплавкой под слоем флюса наплавка в среде защитного газа более производительна (до 1,5 раз по массе и 40% по площади покрытия), дает меньше тепловложения в деталь, однако сопровождается повышением (до 10%) разбрызгиванием металла и открытым светоизлучением

Плазменная наплавка

От других методов она отличается тем, что нагрев и плавление материала покрытия и поверхностного слоя основы осуществляется плазменной струей (рис. 2.4)

Рисунок 2.4 - Схема плазменной наплавки с вдуванием порошка в дугу:

1 – вольфрамовый электрод; 2 – источник питания дуги косвенного действия; 3 – внутреннее сопло; 4 – плазменная струя косвенного действия; 5 – наружное сопло; 6 – плазменная струя прямого действия; 7 – источник прямого действия

В зону наплавки подается наплавочная проволока, порошок или при комбинированном способе одновременно порошок и проволока (например, для восстановления изношенных деталей автомобиля на Витебском мотороремонтном заводе применяют 75…80% проволоки Св-08Г2С и 20…25% самофлюсующегося порошка ПГ-СРУ).

В качестве плазмообразующего газа используется аргон. Замена его (до 90%) значительно снижает стоимость восстановления деталей.

Плазмотроны могут быть прямого, косвенного, комбинированного действия, одно- и многодуговые, прямой и обратной полярности.

Весьма эффективны для плазменной наплавки самофлюсующиеся диффузионно-легированные порошки, на железной основе, разработанные научной школой проф. Пантелеенко Ф.И. (БНТУ). Они позволяют получать наплавленные покрытия с требуемой твердостью, износо- и коррозионной стойкостью (диапазон твердости от 20 до 65 HRC, и более).

Указанная школа имеет значительный опыт восстановления изношенных деталей (валов, штоков, шпинделей, защитных гильз и т.п.) для теплоэнергетики, нефтехимии, целлюлозно-бумажной промышленности стран СНГ.

Плазменная наплавка – один из самых производительных, универсальных и экономичных методов нанесения покрытий толщиной от десятых долей до нескольких миллиметров.

Преимущество плазменной наплавки по сравнению с другими способами:

Минимальный припуск на механическую обработку (0,4…0,9 мм)

Минимальная глубина проплавления основы (0,3…3,5 мм) и зона термического влияния (3…6 мм)

Минимальные тепловложения в основу

Плазменная наплавка целесообразна для восстановления крупногабаритных деталей большой длины и диаметром более 20 мм из углеродистых и легированных сталей (например, коленчатых валов, валов насосов бумагоделательных машин и т.п.)

Наплавка ведется на установке скоростной плазменной наплавки (источник питания УПС-301, плазмотрон СИБ-4, сила тока 90…170А, напряжение 30…35В, поперечная подача плазмотрона 1,5…2 мм/об, дистанция наплавки 8…10 мм).

Наиболее приемлем диффузионно-легированный самофлюсующийся порошок на основе ПР-Сталь 45 с гранулометрическим составом 40…160 мкм. Расход порошка 35 г/мин, толщина наплавленного слоя за проход 0,5…1,5мм, твердость – требуемая (диапазон 20…60 HRC).

2.6 Электромагнитная наплавка или МЭУ, заключается в том, что в зазор между полюсным наконечником и деталью, подается ферромагнитный порошок, который под воздействием магнитного поля выстраивается в зазоре в виде цепочек. Прилагаемое к полюсному наконечнику и детали электрическое поле вызывает нагрев частиц, их оплавление и закрепление на восстанавливаемой поверхности.

Применяют различные порошки ферросплавов, сталей, чугунов и диффузионно-легированные порошки на железной основе.

Покрытия шероховаты, специфичны (толщиной до 0,6 мм), однако весьма эффективны для упрочнения плоских и цилиндрических поверхностей ножей сельскохозяйственной техники, восстановления деталей с малыми износами. Начатые в этом направлении учеными БГАТУ работы получили в последние годы развитие в ГГТУ им. П.О.Сухого и БНТУ.

2.7 Лазерная наплавка при которой в качестве источника тепла используют концентрированный луч лазера. Лазер позволяет наплавлять покрытия, оплавлять предварительно напыленные или нанесенные в виде шликера покрытия. Исключительная локальность пучка и высокая плотность энергии предопределяют его преимущественные области применения и наибольшую эффективность при восстановлении малых поверхностей (5…50 мм 2) с местным износом 0,1…1,0 мм.

Чаще всего лазерной наплавкой восстанавливают кулачки распредвалов, фаски клапанов, оси фильтров тонкой очистки масла и т.п.

Значительных успехов в лазерной наплавке и упрочнении добились ученые ФТИ НАН Беларуси, БНТУ.

2.8 Электронно-лучевая наплавка (ЭЛН) заключается в оплавлении присадочного материала электронным лучом. Во многом этот способ схож со способом лазерной наплавки (по локальности, эффективности)

В последние годы российскими учеными (г. Томск) и школой проф. Груздева В.А. (ПГУ, г. Новополоцк) создан высокоэффективный электронно-лучевой комплекс на базе плазменного источника электронов. Он прост в обслуживании, не требует глубокого вакуума. ЭЛН производительнее индукционной наплавки в 10…15 раз, применима для наплавки любых материалов.

2.9 Индукционная наплавка основывается на использовании токов высокой частоты для нагрева металла детали и наплавляемого материала. Деталь с нанесенной шихтой вводят в индуктор ТВЧ установки. ТВЧ проходя через контур индуктора возбуждают в поверхностном слое детали токи Фуко, которые нагревают поверхность детали. От нагретой поверхности нагревается и оплавляется более легкоплавкая шихта, формируя покрытие.

Шихта (наплавочный порошок и флюс) может не включать флюс, если порошок является самофлюсующимся.

Следует заметить, что применение недорогих самофлюсующихся порошков, в том числе разработанных в БНТУ, самозащитных порошковых проволок позволяет отказаться при многих способов наплавки от применения дорогих защитных газов и тем значительно удешевить технологию нанесения защитных покрытий.

Значительных успехов в разработке технологии индукционной наплавки для промышленности Беларуси добились ученые Объединенного института машиностроения НАН Беларуси (ОИМ НАН Беларуси).

3. Электроконтактная приварка состоит в закреплении проволоки, порошка, ленты мощными импульсами тока (7…30 кА) при приложении давления (1000…1600 Н). При этом материал основы и наносимого покрытия (порошка, ленты) подплавляется на границе их в месте максимального электросопротивления (рис. 2.5).

Преимуществами электроконтактной приварки по сравнению с дуговыми способами наплавки являются:

Более высокая (в 2…3 раза) производительность

Меньший (в 3…4 раза) расход материалов за счет сокращения потерь на разбрызгивание и минимального припуска на механическую обработку

Минимальные тепловложения в основу и отсутствие деформаций

Отсутствие угара легирующих элементов

Простота и экономичность

Рисунок 2.5 – Схема электроконтактной приварки ленты:

1 и 3 – ролики; 2 – восстанавливаемая деталь; 4 – трансформатор; 5 ‑ контактор

Способ эффективен для восстановления шеек валов, других нагруженных цилиндрических поверхностей, отверстий в гильзах и блоках цилиндров и развивается в ОИМ НАН Беларуси