Ароматические арены. Ароматические углеводороды: все о них. Характеристика и использование веществ, добываемых с помощью ароматических углеводородов

Особенности ароматических соединений. Бензол является первым представителем ароматических углеводородов. Он обладает рядом своеобразных свойств, отличающих его от изученных ранее предельных и непредельных ациклических углеводородов. Ароматический характер бензола определяется его строением и проявляется в химических свойствах.

Состав бензола выражается формулой C 6 H 6 . Общая формула гомологов ряда бензола C n H 2 n -6 . Разность между этой формулой и формулой ряда предельных углеводородов C n H 2 n +2 равна . Следовательно, по химическому составу бензол и его гомологи являются непредельными соединениями. Их непредельный характер не проявляется в типичных реакциях. Можно было бы ожидать, что бензол будет вести себя подобно этилену, бутадиену и другим типичным непредельным углеводородам. Однако, он не обесцвечивает бромную воду, т. е. в обычных условиях не присоединяет бром. Раствор марганцевокислого калия при взбалтывании с бензолом не обесцвечивается, т. е. бензол устойчив в этих условиях к окислению. Даже при длительном кипячении с раствором КМn0 4 бензол почти не окисляется. Для него, в основном, характерны реакции замещения:

а) В присутствии катализаторов - кислот Льюиса (FeCl 3 , АlСl 3 ) хлор и бром замещают атомы водорода в молекуле бензола:

б) Концентрированная серная кислота не вызывает полимеризации бензола, как это происходит в случае алкадиенов, а приводит к получению бензолсульфокислоты:

в) При действии нитрующей смеси (концентрированные НNO 3 и H 2 SO 4 ) происходит нитрование ядра (введение в ядро нитрогруппы -NO 2 ) с образованием нитропроизводных бензола.

нитробензол

Классификация реакций замещения. При замещении в бензольном кольце возможны три типа реакций в зависимости от природы атакующей частицы.

1. Радикальное замещение. Если атакующий агент R – радикал, несущий неспаренный электрон, то водород, связанный с атомом углерода ядра, отщепляется с одним из электронов электронной пары -связи. Такой тип замещения называется радикальным. Реакция радикального замещения редко используется в ароматическом ряду.

R + Н-С 6 Н 5 R-С 6 Н 5 + Н

2. Нуклеофильное замещение. При действии несущих отрицательный заряд нуклеофильных частиц на замещенный бензол С 6 Н 5 Х (где Х – заместитель), отщепляющаяся группа Х - уходит вместе с парой -электронов, ранее осуществлявших ее связь с ядром:

Z - + X: C 6 H 5 Z-C 6 H 5 + X -

Примером может служить реакция взаимодействия натриевой соли бензолсульфокислоты со щелочью. Эта реакция лежит в основе промышленного метода получения фенола:

Как правило, для успешного протекания реакций нуклеофильного замещения в ядре должен находиться дополнительно один или лучше два сильных электроноакцепторных заместителя (–NO 2 , –SO 3 Н , –СF 3 ).

3. Электрофильное замещение.

Z + + X:C 6 H 5 Z-C 6 H 5 + X +

Во всех реакциях этого типа атакующий реагент (Y + ) несет на атоме, вступающем в связь с углеродным атомом бензольного ядра, положительный заряд либо имеет ярко выраженный катионоидный характер и образует новую связь за счет пары электронов, ранее осуществлявшей связь С-Н . Замещающийся атом водорода уходит в виде протона (Н + ).

Реакции присоединения к бензолу. В отдельных редких случаях бензол способен к реакциям присоединения. Гидрирование, т. е. присоединение водорода, происходит при действии водорода в жестких условиях в присутствии катализаторов (Ni , Pt , Pd ). При этом молекула бензола присоединяет три молекулы водорода с образованием циклогексана:

циклогексан

Если раствор хлора или брома в бензоле подвергнуть действию солнечного света или ультрафиолетовых лучей, то происходит радикальное присоединение трех молекул галогена с образованием сложной смеси стереоизомеров гексахлорциклогексана (гексахлорана):

Таким образом, ароматический характер бензола (и других аренов) выражается в том, что это соединение, по составу являясь непредельным, в целом ряде химических реакций проявляет себя как предельное соединение; для него характерны химическая устойчивость, трудность реакций присоединения. Только в особых условиях (катализаторы, облучение) бензол ведет себя как триеновый углеводород.

5.2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ (от греческого?ρωμα - благовония), органические соединения, характеризующиеся главным образом наличием замкнутой системы сопряжённых связей, которая включает, согласно правилу Хюккеля, (4n + 2) π-электронов (n = 0, 1, 2, ...); удовлетворяют всем или нескольким критериям ароматичности. Наиболее известны и важны: ароматические углеводороды (арены), в том числе моноциклические - бензол и его гомологи (например, ксилолы, кумол, толуол, этилбензол) и полициклические, построенные из бензольных колец, непосредственно связанных друг с другом (например, бифенил), связанных через какую-либо группу (например, дифенилметан), конденсированных (например, антрацен, нафталин); производные аренов (например, фенолы); гетероароматические соединения, т. е. обладающие ароматичностью гетероциклические системы (например, пиридин, пиримидин, тиофен, фуран). К ароматическим соединениям относят также некоторые макроциклические аннулены (например, аннулен), элементоорганические соединения (например, ферроцен), тропилия соединения и пр.

Ароматические соединения - жидкости или твёрдые вещества. Для них характерно наличие так называемого магнитного кольцевого тока и резонанс в слабопольной («ароматической») части спектра ЯМР (6,5-8,0 м. д. для 1 Н и 110-170 м. д. для 13 С). Ароматические соединения вступают в реакции электрофильного замещения (например, галогенирование, нитрование, сульфирование, алкилирование и ацилирование по Фриделю - Крафтсу). Введение электрофила Е + в молекулу ароматического соединения облегчается и электрофил направляется преимущественно в орто- и параположения цикла при наличии в молекуле ароматического соединения заместителей, являющихся ориентантами I poдa (алкилы, арилы, атомы галогенов, группы OR, NR 2 , SR, где R - органический радикал), затрудняется и направляется преимущественно в метаположение цикла заместителями - ориентантами II рода (COR, COOR, CN, NO 2 , SO 2 R, SO 3 Н). Электрофильное замещение протекает по механизму присоединения - отщепления через катионный σ-комплекс - интермедиат Уэланда (Х - заместитель):

Ароматические соединения вступают также в реакции нуклеофильного замещения при действии нуклеофилов Nu - , например R2N - , RO - , RS - , (RCO)2CH - , галогенид-анионов. При этом в молекуле ароматическго соединения замещаются атомы галогенов, группы NO 2 , NR 2 , OR, SR, SO 3 Н, реже - атомы водорода. Такие реакции часто протекают в жёстких условиях, например при повышенных температурах. Они облегчаются в присутствии соединений меди и, особенно при наличии в орто- или параположении к уходящей группе заместителя - ориентанта II рода. Нуклеофильное замещение протекает главным образом по механизму присоединения - отщепления, через образование анионного σ-комплекса - интермедиат Майзенхаймера (Y - замещаемая группа):

Меньшее значение для ароматического соединения имеет гемолитическое замещение, например арилирование диазосоединениями и гидроксилирование с использованием реагента Фентона (Н 2 О 2 + CuSО 4 + Н 2 SO 4). Ароматические соединения подвергаются металлированию (прямому замещению водорода или обмену галогена на металл при действии металлов или металлоорганических соединений). Реакции ароматического соединения по замещающим группам в целом подобны реакциям соответствующих алифатических соединений. Основные особенности - образование ароматическими аминами с НNO 2 устойчивых диазосоединений, способных к азосочетанию и превращающихся при действии нуклеофилов в различные замещённые ароматические соединения. Из реакций присоединения для ароматических соединений наиболее важно каталитическое гидрирование - общий метод синтеза соединений ряда циклогексана. Ароматические соединения устойчивы к окислению. Алкилароматические соединения обычно окисляются по соседнему с ароматическим циклом атому углерода алкильного заместителя. Таким способом получают ароматические кислоты (например, терефталевую из n-ксилола), альдегиды (n-нитробензальдегид из n-нитротолуола), кетоны (ацетофенон из этилбензола) и спирты (трифенилкарбинол из трифенилметана).

Ароматические соединения содержатся в нефти, однако в основном их получают в промышленности из продуктов коксования каменного угля и ароматизацией углеводородов; затем ароматические соединения превращают в различные производные. Ароматические соединения - важные промежуточные и целевые продукты промышленного органического синтеза; их применяют в производстве красителей, лекарств, средств защиты растений, взрывчатых веществ, полимерных материалов.

Ароматические углеводороды - компоненты высокооктановых бензинов.

Лит.: Горелик М. В., Эфрос Л. С. Основы химии и технологии ароматических соединений. М., 1992.

Напомним, что все органические соединения подразделяются на две большие группы:

  • соединения с открытой цепью атомов (алифатические ) и
  • циклические соединения .

Циклические соединения характерны наличием в их молекулах, так называемых, циклов.


Цикл – это замкнутая цепь, т. е. такая цепь, которая, начавшись в некоторой вершине, завершается в ней же.

Циклические соединения, в свою очередь, подразделяются на:

  • Карбоциклические соединения
  • - алициклические соединения,
    - ароматические соединения.

Карбоциклические соединения – это соединения, в молекулах которых присутствуют циклы, состоящие только из атомов углерода.


Помимо связи друг с другом, атомы углерода также связаны и с другими атомами (водородом, кислородом и т.д), но сам цикл составлен именно из атомов углерода. Это обстоятельство отражено в их названии (Carboneum по латински – углерод).



Это циклические соединения, в циклах которых помимо атомов углерода, присутствуют атомы других элементов (кислорода, азота, серы и др.). И это тоже отражено в их названии (от греч. ετερος - «иной», «различный»).


На рисунке выше (справа) в качестве примера гетероциклического соединения приведен Пиридин.

Карбоциклические соединения

Карбоциклические соединения разделяют на алициклические и ароматические.

Алициклические соединения являются одним из двух подвидов карбоциклических соединений.


Называют так потому, что по химическим свойствам они наиболее близки к алифатическим соединениям, хотя по структуре они и являются кольцеобразными.


Они различаются по числу атомов углерода в цикле и, в зависимости от характера связи между этими атомами, могут быть предельными и непредельными.


В молекулах предельных циклические углеводородов атомы угерода соединены простыми связями, как и в молекулах предельных углеводородов с открытой цепью, что делает их сходными по свойствам с последними.


Примерами таких соединений могут служить циклопарафины:



Названия циклических соединений строятся подобно наименованиям соединений жирного (алифатического) ряда с добавлением приставки «цикло».

Второй подвид карбоциклических соединений – ароматические соединения.


Ароматический ряд охватывает все карбоциклические соединения, в молекулах которых присутствует специфическая группировка атомов – бензольное кольцо . Эта группировка атомов обуславливает определённые физические и химические свойства ароматических соединений.


Простейшими из них являются бензол С 6 Н 6 и его гомологи, например, толуол (метилбензол) С 6 Н 5 -СН 3 , этилбензол С 6 Н 5 -СН 2 СН 3 . Общая формула этих соединений С n H 2n-2 .



Характерная особенность структуры бензольного кольца – чередующиеся друг с другом три простые и три двойные связи . Для простоты написания бензольное ядро изображается упрощённо в виде шестиугольника, в котором символы С и Н , относящиеся к кольцу, не пишут:



Одновалентный радикал бензола С 6 Н 5 - , образующийся при отнятии одного атома водорода от любого углеродного атома бензольного ядра, называют фенилом .


Известны ароматические углеводороды с кратными связями в боковых цепях, например стирол, а также многоядерные, содержащие несколько бензольных ядер, например нафталин и антрацен :



Или упрощённо:


Получение ароматических соединений и их использование.


Ароматические углеводороды содержатся в каменноугольной смоле, получаемой при коксовании каменного угля. Другим важным источником их получения служит нефть некоторых месторождений.


Ароматические углеводороды также получают путём каталитической ароматизации ациклических углеводородов нефти.


Некоторые ароматические соединения могут быть выделены из эфирных масел растений. Их применяют для получения душистых веществ.


Ароматические углеводороды и их производные широко применяются для получения пластмасс, синтетических красителей, лекарственных и взрывчатых веществ, синтетических каучуков, моющих средств.


Происхождение названия.


Бензол и все соединения, содержащие ядро бензола, названы ароматическими (в начале XIX века), поскольку первыми изученными представителями этого ряда были душистые вещества, или соединения, выделенные из природных ароматических веществ. Теперь к этому ряду относятся многочисленные соединения, не имеющие приятного запаха, но обладающие комплексом химических свойств, называемых ароматическими свойствами.


Особенности свойств и строения ароматических углеводородов.


Ароматические свойства бензола и его гомологов, определяемые особенностью его структуры, выражаются в относительной устойчивости бензольного ядра, несмотря на непредельность бензола по составу.


Так, в отличие от непредельных соединений с этиленовыми двойными связями, бензол устойчив к действию окислителей. Например, подобно предельным углеводородам, он не обесцвечивает перманганат калия. Реакции присоединения для бензола не характерны. Наоборот, для него, как и для других ароматических соединений, характерны реакции замещения атомов водорода в бензольном ядре.


Из сказанного следует, что формула бензола с чередующимися простыми и двойными связями неточно выражает природу связей между атомами углерода в бензольном ядре.


В соответствии с этой формулой в бензоле должны быть три локализованных пи-связи, т.е. три пары пи-электронов, каждая из которых фиксирована между двумя атомами углерода. Если обозначить эти пи-электроны точками, то строение можно представить схемой:


Однако опыт показывает, что в кольце бензола нет обычных двойных связей, чередующихся с простыми, и что все связи между С -атомами равноценны.


Эта равноценность объясняется следующим образом.


Каждый из атомов углерода в кольце бензола находится в состоянии sp 2 -гибридизации и затрачивает по три валентных электрона на образование сигма-связей с двумя соседними атомами углерода и одним атомом водорода.


При этом все шесть атомов углерода и все сигма-связи С-С и С-Н лежат в одной плоскости:



Облако четвёртого валентного электрона каждого из атомов углерода (т.е. облако р -электрона, не участвующего в гибридизации) имеет форму объёмной восьмёрки («гантели») и ориентировано перпендикулярно плоскости бензольного кольца.


Каждое из таких р -электронных облаков перекрывается над и под плоскостью кольца с р -электронными облаками двух соседних атомов углерода.



Плотность облаков пи -электронов в бензоле равномерно распределена между всеми связями С-С . Иначе говоря, шесть пи -электронов обобщены всеми углеродными атомами кольца и образуют единое кольцевое облако (ароматический электронный секстет ).


По этой причине в структурных формулах вместо общепринятого символа бензольного ядра с чередующимися двойными и простыми связями используют шестиугольник с кружочком внутри:


Гетероциклическими называют соединения с замкнутой цепью, включающие не только атомы углерода, но и атомы других элементов.



Представленный на рисунке Пиридин можно рассматривать как бензол, в котором группа -СН заменена атомом азота.


– наиболее многочисленный класс соединений. К ним относятся многие витамины, пигменты, антибиотики, большинство алкалоидов, некоторые аминокислоты и пр.


Элементы, которые учавствуют вместе с атомами углерода в образовании цикла, называют гетероатомами . Наиболее распространены и изучены гетероциклические соединения кислорода, серы и азота.


В составе гетеромолеклу может быть как один гетероатом, так большее количество:


Гетероциклы могут содержать три, четыре, пять, шесть и больше число атомов. Аналогично карбоциклическим соединениям пяти- и шестичленные гетероциклы наиболее стойки.



Присутствие гетероатома приводит к нарушению равномерности распределения электронной плотности в цикле. Это обусловливает способность гетероциклических соединений реагировать как с электрофильными, так и с нуклеофильными реагентами (т.е. быть как донором, так и акцептором электронной пары), а также сравнительно легко претерпевать разрывание цикла.

Химия — очень увлекательная наука. Она изучает все вещества, которые существуют в природе, а их огромное множество. Они разделяются на неорганические и органические. В этой статье мы рассмотрим ароматические углеводороды, которые относятся к последней группе.

Что это такое?

Это органические вещества, которые имеют в своем составе одно или несколько бензольных ядер — устойчивых структур из шести атомов углерода, соединенных в многоугольник. Данные химические соединения обладают специфическим запахом, что можно понять из их названия. Углеводороды этой группы относятся к циклическим, в отличие от алканов, алкинов и др.

Ароматические углеводороды. Бензол

Это самое простое химическое соедиение из данной группы веществ. В состав его молекул входят шесть атомов углерода и столько же гидрогена. Все остальные ароматические углеводороды являются производными бензола и могут быть получены с его использованием. Это вещество при нормальных условиях находится в жидком состоянии, оно бесцветное, обладает специфическим сладковатым запахом, в воде не растворяется. Закипать оно начинает при температуре +80 градусов по Цельсию, а замерзать — при +5.

Химические свойства бензола и других ароматических углеводородов

Первое, на что нужно обратить внимание, — галогенирование и нитрование.

Реакции замещения

Первая из них — галогенирование. В этом случае, чтобы химическое взаимодействие могло осуществиться, нужно использовать катализатор, а именно трихлорид железа. Таким образом, если добавить к бензолу (С 6 Н 6) хлор (Cl 2), то мы получим хлорбензол (С 6 Н 5 Cl) и хлороводород (HCl), который выделится в виде прозрачного газа с резким запахом. То есть вследствие этой реакции один атом водорода замещается атомом хлора. То же самое может произойти и при добавлении к бензолу других галогенов (йода, брома и т. д.). Вторая реакция замещения — нитрование — проходит по похожему принципу. Здесь в роли катализатора выступает концентрированный раствор серной кислоты. Для проведения такого рода химической реакции к бензолу необходимо добавить нитратную кислоту (HNO 3), тоже концентрированную, в результате чего образуются нитробензол (C 6 H 5 NO 2) и вода. В этом случае атом гидрогена замещается группой из атома нитрогена и двух оксигена.

Реакции присоединения

Это второй тип химических взаимодействий, в которые способны вступать ароматические углеводороды. Они также существуют двух видов: галогенирование и гидрирование. Первая происходит только при наличии солнечной энергии, которая выступает в роли катализатора. Для проведения этой реакции к бензолу также необходимо добавить хлор, но в большем количестве, чем для замещения. На одну молекулу бензола должно приходиться три хлора. В результате получим гексахлорциклогексан (С 6 Н 6 Cl 6), то есть к имеющимся атомам присоединится еще и шесть хлора.

Гидрирование происходит только в присутствии никеля. Для этого необходимо смешать бензол и гидроген (Н 2). Пропорции те же, что и в предыдущей реакции. Вследствие этого образуется циклогексан (С 6 Н 12). Все остальные ароматические углеводороды также могут вступать в такого типа реакции. Они происходят по такому же принципу, как и в случае с бензолом, только с образованием уже более сложных веществ.

Получение химических веществ этой группы

Начнем все так же с бензола. Его можно получить с помощью такого реагента, как ацетилен (С 2 Н 2). Из трех молекул данного вещества под воздействием высокой температуры и катализатора образуется одна молекула нужного химического соединения.

Также бензол и некоторые другие ароматические углеводороды можно добыть из каменноугольной смолы, которая образуется во время производства металлургического кокса. К получаемым таким способом можно отнести толуол, о-ксилол, м-ксилол, фенантрен, нафталин, антрацен, флуорен, хризен, дифенил и другие. Кроме того, вещества этой группы часто добывают из продуктов переработки нефти.

Как выглядят разнообразные химические соединения этого класса?

Стирол представляет собой бесцветную жидкость с приятным запахом, малорастворимую в воде, температура кипения составляет +145 градусов по Цельсию. Нафталин — кристаллическое вещество, также мало растворяется в воде, плавится при температуре +80 градусов, а закипает при +217. Антрацен в нормальных условиях также представлен в виде кристаллов, однако уже не бесцветных, а имеющих желтую окраску. Это вещество не растворяется ни в воде, ни в органических растворителях. Температура плавления — +216 градусов по шкале Цельсия, кипения — +342. Фенантрен выглядит как блестящие кристалы, которые растворяются только в органических растворителях. Температура плавления — +101 градус, кипения — +340 градусов. Флуорен, как понятно из названия, способен к флуоресценции. Это, как и многие другие вещества данной группы, — бесцветные кристаллы, нерастворимые в воде. Температура плавления — +116, закипания — +294.

Применение ароматических углеводородов

Бензол используется при производстве красителей в качестве сырья. Также он применяется при получении взрывчатки, пестицидов, некоторых лекарств. Стирол используют в производстве полистирола (пенопласта) с помощью полимеризации исходного вещества. Последний широко применяют в строительстве: в качестве тепло- и звукоизолирующего, электроизоляционного материала. Нафталин, как и бензол, участвует в производстве пестицидов, красителей, лекарств. Кроме того, он используется в химической промышленности для получения многих органических соединений. Антрацен также применяют в изготовлении красителей. Флуорен играет роль стабилизатора полимеров. Фенантрен, как и предыдущее вещество и многие другие ароматические углеводороды, — один из компонентов красителей. Толуол широко применяют в химической промышленности для добывания органических веществ, а также для получения взрывчатки.

Характеристика и использование веществ, добываемых с помощью ароматических углеводородов

К таким в первую очередь можно отнести продукты рассмотренных химических реакций бензола. Хлорбензол, к примеру, является органическим растворителем, также используется в производстве фенола, пестицидов, органических веществ. Нитробензол является компонентом полировальных средств для металла, применяется при изготовлении некоторых краситлей и ароматизаторов, может играть роль растворителя и окислителя. Гексахлорциклогексан используется в качестве яда для борьбы с насекомыми-вредителями, а также в химической промышленности. Циклогексан применяют в производстве лакокрасочных изделий, при получении многих органических соединений, в фарамацевтической отрасли промышленности.

Заключение

Прочитав эту статью, можно сделать вывод, что все ароматические углеводороды имеют однотипную химическую структуру, что позволяет объединить их в один класс соединений. Кроме того, их физические и химические свойства также весьма похожи. Внешний вид, температуры кипения и плавления всех химических веществ данной группы не сильно отличаются. Свое применение многие ароматические углеводороды находят в одних и тех же отраслях промышленности. Вещества, которые можно получить вследствие реакций галогенирования, нитрования, гидрирования, также имеют схожие свойства и используются в похожих целях.

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (АРЕНЫ)

Типичными представителями ароматических углеводородов являются производные бензола, т.е. такие карбоциклические соединения, в молекулах которых имеется особая циклическая группировка из шести атомов углерода, называемая бензольным или ароматическим ядром.
Общая формула ароматических углеводородов CnH2n-6.

Строение бензола

Для изучения строения бензола необходимо просмотреть анимационный фильм "Строение бензола" (Данный видеоматериал доступен только на CD-ROM). Текст, сопровождающий этот фильм, в полном объеме перенесен в данный подраздел и ниже следует.

"В 1825 году английский исследователь Майкл Фарадей при термическом разложении ворвани выделил пахучее вещество, которое имело молекулярную формулу C6Н6. Это соединение, называемое теперь бензолом, является простейшим ароматическим углеводородом.
Распространенная структурная формула бензола, предложенная в 1865 году немецким ученым Кекуле, представляет собой цикл с чередующимися двойными и одинарными связями между углеродными атомами:

Однако физическими, химическими, а также квантово-механическими исследованиями установлено, что в молекуле бензола нет обычных двойных и одинарных углерод-углеродных связей. Все эти связи в нем равноценны, эквивалентны, т.е. являются как бы промежуточными "полуторными " связями, характерными только для бензольного ароматического ядра. Оказалось, кроме того, что в молекуле бензола все атомы углерода и водорода лежат в одной плоскости, причем атомы углерода находятся в вершинах правильного шестиугольника с одинаковой длиной связи между ними, равной 0,139 нм, и все валентные углы равны 120°. Такое расположение углеродного скелета связано с тем, что все атомы углерода в бензольном кольце имеют одинаковую электронную плотность и находятся в состоянии sp2 - гибридизации. Это означает, что у каждого атома углерода одна s- и две p- орбитали гибридизованы, а одна p- орбиталь негибридная. Три гибридных орбитали перекрываются: две из них с такими же орбиталями двух смежных углеродных атомов, а третья - с s- орбиталью атома водорода. Подобные перекрывания соответствующих орбиталей наблюдаются у всех атомов углерода бензольного кольца, в результате чего образуются двенадцать s- связей, расположенных в одной плоскости.
Четвертая негибридная гантелеобразная p- орбиталь атомов углерода расположена перпендикулярно плоскости направления s- связей. Она состоит из двух одинаковых долей, одна из которых лежит выше, а другая - ниже упомянутой плоскости. Каждая p- орбиталь занята одним электроном. р- Орбиталь одного атома углерода перекрывается с p- орбиталью соседнего атома углерода, что приводит, как и в случае этилена, к спариванию электронов и образованию дополнительной p- связи. Однако в случае бензола перекрывание не ограничивается только двумя орбиталями, как в этилене: р- орбиталь каждого атома углерода одинаково перекрывается с p- орбиталями двух смежных углеродных атомов. В результате образуются два непрерывных электронных облака в виде торов, одно из которых лежит выше, а другое - ниже плоскости атомов (тор - это пространственная фигура, имеющая форму бублика или спасательного круга). Иными словами, шесть р- электронов, взаимодействуя между собой, образуют единое p- электронное облако, которое изображается кружочком внутри шестичленного цикла:

С теоретической точки зрения ароматическими соединениями могут называться только такие циклические соединения, которые имеют плоское строение и содержат в замкнутой системе сопряжения (4n+2) p- электронов, где n - целое число. Приведенным критериям ароматичности, известным под названием правила Хюккеля, в полной мере отвечает бензол. Его число шесть p- электронов является числом Хюккеля для n=1, в связи с чем, шесть p- электронов молекулы бензола называют ароматическим секстетом".
Примером ароматических систем с 10 и 14 p- электронами являются представители многоядерных ароматических соединений -
нафталин и
антрацен .

Изомерия

Теория строения допускает существование только одного соединения с формулой бензола (C6H6) а также только одного ближайшего гомолога - толуола (C7H8). Однако последующие гомологи могут уже существовать в виде нескольких изомеров. Изомерия обусловлена изомерией углеродного скелета имеющихся радикалов и их взаимным положением в бензольном кольце. Положение двух заместителей указывают с помощью приставок: орто- (о-), если они находятся у соседних углеродных атомов (положение 1, 2-), мета- (м-) для разделенных одним атомом углерода (1, 3-) и пара- (п-) для находящихся напротив друг друга (1, 4-).
Например, для диметилбензола (ксилола):

орто-ксилол (1,2-диметилбензол)

мета-ксилол (1,3-диметилбензол)

пара-ксилол (1,4-диметилбензол)

Получение

Известны следующие способы получения ароматических углеводородов.

1) Каталитическая дегидроциклизация алканов, т.е. отщепление водорода с одновременной циклизацией (способ Б.А.Казанского и А.Ф.Платэ). Реакция осуществляется при повышенной температуре с использованием катализатора, например оксида хрома.

гептан--500°C® + 4H2 толуол

2) Каталитическое дегидрирование циклогексана и его производных (Н.Д.Зелинский). В качестве катализатора используется палладиевая чернь или платина при 300°C.

циклогексан --300°C,Pd®+ 3H2

3) Циклическая тримеризация ацетилена и его гомологов над активированным углем при 600°C (Н.Д.Зелинский).

3НCєСН--600°C®

4) Сплавление солей ароматических кислот со щелочью или натронной известью.

NaOH--t°®+ Na2CO3

5) Алкилирование собственно бензола галогенопроизводными (реакция Фриделя-Крафтса) или олефинами.

Физические свойства

Бензол и его ближайшие гомологи - бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях - спирте, эфире, ацетоне.
Физические свойства некоторых аренов представлены в таблице.

Таблица. Физические свойства некоторых аренов

Название

Формула

t°.пл.,
°C

t°.кип.,
°C

d 4 20

Бензол

C 6 H 6

80,1

0,8790

Толуол (метилбензол)

С 6 Н 5 СH 3

95,0

110,6

0,8669

Этилбензол

С 6 Н 5 С 2 H 5

95,0

136,2

0,8670

Ксилол (диметилбензол)

С 6 Н 4 (СH 3 ) 2

орто-

25,18

144,41

0,8802

мета-

47,87

139,10

0,8642

пара-

13,26

138,35

0,8611

Пропилбензол

С 6 Н 5 (CH 2 ) 2 CH 3

99,0

159,20

0,8610

Кумол (изопропилбензол)

C 6 H 5 CH(CH 3 ) 2

96,0

152,39

0,8618

Стирол (винилбензол)

С 6 Н 5 CH=СН 2

30,6

145,2

0,9060

Химические свойства

Бензольное ядро обладает высокой прочностью, чем и объясняется склонность ароматических углеводородов к реакциям замещения. В отличие от алканов, которые также склонны к реакциям замещения, ароматические углеводороды характеризуются большой подвижностью атомов водорода в ядре, поэтому реакции галогенирования, нитрования, сульфирования и др. протекают в значительно более мягких условиях, чем у алканов.

Электрофильное замещение в бензоле

Несмотря на то, что бензол по составу является ненасыщенным соединением, для него не характерны реакции присоединения. Типичными реакциями бензольного кольца являются реакции замещения атомов водорода - точнее говоря, реакции электрофильного замещения.
Рассмотрим примеры наиболее характерных реакций этого типа.

1) Галогенирование. При взаимодействии бензола с галогеном (в данном случае с хлором) атом водорода ядра замещается галогеном.

Cl2 -AlCl3® (хлорбензол) + H2O

Реакции галогенирования осуществляются в присутствии катализатора, в качестве которого чаще всего используют хлориды алюминия или железа.

2) Нитрование. При действии на бензол нитрующей смеси атом водорода замещается нитрогруппой (нитрующая смесь - это смесь концентрированных азотной и серной кислот в соотношении 1:2 соответственно).

HNO3 -H2SO4® (нитробензол) + H2O

Серная кислота в данной реакции играет роль катализатора и водоотнимающего средства.

3) Сульфирование. Реакция сульфирования осуществляется концентрированной серной кислотой или олеумом (олеум - это раствор серного ангидрида в безводной серной кислоте). В процессе реакции водородный атом замещается сульфогруппой, приводя к моносульфокислоте.

H2SO4 -SO3® (бензолсульфокислота) + H2O

4) Алкилирование (реакция Фриделя-Крафтса). При действии на бензол алкилгалогенидов в присутствии катализатора (хлористого алюминия) осуществляется замещение алкилом атома водорода бензольного ядра.

R-Cl -AlCl3® (R-углеводородный радикал) + HCl

Следует отметить, что реакция алкилирования представляет собой общий способ получения гомологов бензола - алкилбензолов.

Рассмотрим механизм реакции электрофильного замещения в ряду бензола на примере реакции хлорирования.
Первичной стадией является генерирование электрофильной частицы. Она образуется в результате гетеролитического расщепления ковалентной связи в молекуле галогена под действием катализатора и представляет собой хлорид-катион.

AlCl3 ® Cl+ + AlCl4-

Образующаяся электрофильная частица атакует бензольное ядро, приводя к быстрому образованию нестойкого p- комплекса, в котором электрофильная частица притягивается к электронному облаку бензольного кольца.

P- комплекс

Иными словами, p- комплекс - это простое электростатическое взаимодействие электрофила и p- электронного облака ароматического ядра.
Далее происходит переход p- комплекса в s- комплекс, образование которого является наиболее важной стадией реакции. Электрофильная частица "захватывает" два электрона s- электронного секстета и образует s- связь с одним из атомов углерода бензольного кольца.

s- комплекс

s- Комплекс - это катион, лишенный ароматической структуры, с четырьмя p- электронами, делокализованными (иначе говоря, распределенными) в сфере воздействия ядер пяти углеродных атомов. Шестой атом углерода меняет гибридное состояние своей электронной оболочки от sp2- до sp3-, выходит из плоскости кольца и приобретает тетраэдрическую симметрию. Оба заместителя - атомы водорода и хлора располагаются в плоскости, перпендикулярной к плоскости кольца.
На заключительной стадии реакции происходит отщепление протона от s- комплекса и ароматическая система восстанавливается, поскольку недостающая до ароматического секстета пара электронов возвращается в бензольное ядро.

Отщепляющийся протон связывается с анионом четыреххлористого алюминия с образованием хлористого водорода и регенерацией хлорида алюминия.

H+ + AlCl4- ® HCl + AlCl3

Именно благодаря такой регенерации хлорида алюминия для начала реакции неоходимо очень небольшое (каталитическое) его количество.
Несмотря на склонность бензола к реакциям замещения, он в жестких условиях вступает и в реакции присоединения.

1) Гидрирование. Присоединение водорода осуществляется только в присутствии катализаторов и при повышенной температуре. Бензол гидрируется с образованием циклогексана, а производные бензола дают производные циклогексана.

3H2 -t°,p,Ni® (циклогексан)

2) На солнечном свету под воздействием ультрафиолетового излучения бензол присоединяет хлор и бром с образованием гексагалогенидов, которые при нагревании теряют три молекулы галогеноводорода и приводят к тригалогенбензолам.

3Cl2 -hn®

гексахлорциклогексан

сим-трихлорбензол

3) Окисление. Бензольное ядро более устойчиво к окислению, чем алканы. Даже перманганат калия, азотная кислота, пероксид водорода в обычных условиях на бензол не действуют. При действии же окислителей на гомологи бензола ближайший к ядру атом углерода боковой цепи окисляется до карбоксильной группы и дает ароматическую кислоту.

2KMnO4 ® (калиевая соль бензойной кислоты) + 2MnO2 + KOH + H2O

4KMnO4 ® + K2CO3 + 4MnO2 + 2H2O + KOH

Во всех случаях, как видно, независимо от длины боковой цепи образуется бензойная кислота.
При наличии в бензольном кольце нескольких заместителей можно окислить последовательно все имеющиеся цепи. Эта реакция применяется для установления строения ароматических углеводородов.

-[O]® (терефталевая кислота)

Правила ориентации в бензольном ядре

Как и собственно бензол, гомологи бензола также вступают в реакцию электрофильного замещения. Однако, существенной особенностью этих реакций является то, что новые заместители вступают в бензольное кольцо в определенные положения по отношению к уже имеющимся заместителям. Иными словами, каждый заместитель бензольного ядра обладает определенным направляющим (или ориентирующим) действием. Закономерности, определяющие направление реакций замещения в бензольном ядре, называются правилами ориентации.
Все заместители по характеру своего ориентирующего действия делятся на две группы.
Заместители первого рода (или орто-пара-ориентанты) - это атомы или группы атомов, способные отдавать электроны (электронодонорные). К ним относятся углеводородные радикалы, группы -OH и -NH2, а также галогены. Перечисленные заместители (кроме галогенов) увеличивают активность бензольного ядра. Заместители первого рода ориентируют новый заместитель преимущественно в орто- и пара-положение.

2 + 2H2SO4 ® (о-толуолсульфок-та) + (п-толуолсульфок-та) + 2H2O

2 + 2Cl2 -AlCl3® (о-хлортолуол) + (п-хлортолуол) + 2HCl

Рассматривая последнюю реакцию, необходимо отметить, что в отсутствии катализаторов на свету или при нагревании (т.е. в тех же условиях, что и у алканов) галоген можно ввести в боковую цепь. Механизм реакции замещения в этом случае радикальный.

Cl2 -hn® (хлористый бензил) + HCl

Заместители второго рода (мета-ориентанты) - это способные оттягивать, принимать электроны от бензольного ядра электроноакцепторные группировки. К ним относятся:
-NO2, -COOH, -CHO, -COR, -SO3H.
Заместители второго рода уменьшают активность бензольного ядра, они направляют новый заместитель в мета-положение.

HNO3 -H2SO4® (м-динитробензол) + H2O

HNO3 -H2SO4® (м-нитробензойная кислота) + H2O

Применение

Ароматические углеводороды являются важным сырьем для производства различных синтетических материалов, красителей, физиологически активных веществ. Так, бензол - продукт для получения красителей, медикаментов, средств защиты растений и др. Толуол используется как сырье в производстве взрывчатых веществ, фармацевтических препаратов, а также в качестве растворителя. Винилбензол (стирол) применяется для получения полимерного материала - полистирола.