Сфера, шар, сегмент и сектор. Формулы и свойства сферы. Как найти площадь и объем шара Формула вычисления площади сферы

Мы даем здесь очень простой, хотя и не совсем строгий вывод формулы для площади сферической поверхности; по своей идее он очень близок к методам интегрального исчисления. Итак, пусть дан некоторый шар радиуса R. Выделим на его поверхности какую-либо малую область (рис. 412) и рассмотрим пирамиду или конус с вершиной в центре шара О, имеющие эту область своим основанием; строго говоря, мы лишь условно говорим о конусе или пирамиде, так как основание не плоское, а сферическое. Но при малых размерах основания по сравнению с радиусом шара оно будет весьма мало отличаться от плоского (так, например, при измерении не очень большого земельного участка пренебрегают тем, что он лежит не на плоскости, а на сфере).

Тогда, обозначая через площадь этого участка - основание «пирамиды», найдем ее объем как произведение одной трети высоты на площадь основания (высотой служит радиус шара):

Если теперь всю поверхность шара разложить на очень большое число N таких малых областей , тем самым объем шара на N объемов «пирамид», имеющих эти области своими основаниями, то весь объем представится суммой

где последняя сумма равна полной поверхности шара:

Итак, объем шара равен одной трети произведения его радиуса на площадь поверхности. Отсюда для площади поверхности имеем формулу

Последний результат формулируется так:

Площадь поверхности шара равна учетверенной площади его большого круга.

Приведенный вывод пригоден и для площади поверхности сектора шара (имеем в виду только основание, т. е. сферическую поверхность, или «шапочки»; см. рис. 409). И в этом случае объем сектора равен одной трети произведения радиуса шара на площадь его сферического основания:

откуда находим для площади шапочки формулу

Шаровым поясом (см. рис. 408) называют сферическую поверхность шарового слоя. Чтобы вычислить площадь поверхности шарового пояса, находим разность поверхностей двух сферических шапочек:

где - высота слоя. Итак, площадь поверхности шарового пояса для данного шара зависит только от высоты соответствующего слоя, но не от его положения на шаре.

Задача. Боковая поверхность конуса, описанного вокруг шара, имеет площадь, равную полуторной площади поверхности шара. Найти высоту конуса, если радиус шара равен .

Решение. Введем для удобства угол а между высотой и образующей конуса (рис. 413). Найдем для высоты, радиуса основания и образующей конуса выражения

Мы даем здесь очень простой, хотя и не совсем строгий вывод формулы для площади сферической поверхности; по своей идее он очень близок к методам интегрального исчисления. Итак, пусть дан некоторый шар радиуса R. Выделим на его поверхности какую-либо малую область (рис. 412) и рассмотрим пирамиду или конус с вершиной в центре шара О, имеющие эту область своим основанием; строго говоря, мы лишь условно говорим о конусе или пирамиде, так как основание не плоское, а сферическое. Но при малых размерах основания по сравнению с радиусом шара оно будет весьма мало отличаться от плоского (так, например, при измерении не очень большого земельного участка пренебрегают тем, что он лежит не на плоскости, а на сфере).

Тогда, обозначая через площадь этого участка - основание «пирамиды», найдем ее объем как произведение одной трети высоты на площадь основания (высотой служит радиус шара):

Если теперь всю поверхность шара разложить на очень большое число N таких малых областей , тем самым объем шара на N объемов «пирамид», имеющих эти области своими основаниями, то весь объем представится суммой

где последняя сумма равна полной поверхности шара:

Итак, объем шара равен одной трети произведения его радиуса на площадь поверхности. Отсюда для площади поверхности имеем формулу

Последний результат формулируется так:

Площадь поверхности шара равна учетверенной площади его большого круга.

Приведенный вывод пригоден и для площади поверхности сектора шара (имеем в виду только основание, т. е. сферическую поверхность, или «шапочки»; см. рис. 409). И в этом случае объем сектора равен одной трети произведения радиуса шара на площадь его сферического основания:

откуда находим для площади шапочки формулу

Шаровым поясом (см. рис. 408) называют сферическую поверхность шарового слоя. Чтобы вычислить площадь поверхности шарового пояса, находим разность поверхностей двух сферических шапочек:

где - высота слоя. Итак, площадь поверхности шарового пояса для данного шара зависит только от высоты соответствующего слоя, но не от его положения на шаре.

Задача. Боковая поверхность конуса, описанного вокруг шара, имеет площадь, равную полуторной площади поверхности шара. Найти высоту конуса, если радиус шара равен .

Решение. Введем для удобства угол а между высотой и образующей конуса (рис. 413). Найдем для высоты, радиуса основания и образующей конуса выражения

Многие из нас любят играть в футбол или, по крайней мере, почти каждый из нас слышал про эту знаменитую спортивную игру. Всем известно, что в футбол играют мячом.

Если спросить прохожего, форму какой геометрической фигуры имеет мяч, то часть людей скажут, что форму шара, а часть, что формы сферы. Так кто же из них прав? И в чем разница между сферой и шаром?

Важно!

Шар — это пространственное тело. Внутри шар чем-либо заполнен. Поэтому у шара можно найти объем.

Примеры шара в жизни: арбуз и стальной шарик.

Шар и сфера, подобно кругу и окружности, имеют центр, радиус и диаметр.

Важно!

Сфера — поверхность шара. У сферы можно найти площадь поверхности.

Примеры сферы в жизни: волейбольный мяч и шарик для игры в настольный теннис.

Как найти площадь сферы

Запомните!

Формула площади сферы: S = 4π R 2

Для того, чтобы найти площадь сферы, необходимо вспомнить, что такое степень числа . Зная определение степени, можно записать формулу площади сферы следующим образом.
S = 4π R 2 = 4π R · R;

Закрепим полученные знания и решим задачу на площадь сферы.

Зубарева 6 класс. Номер 692(а)

Условие задачи:

  • Вычислите площадь сферы, если её радиус равен 1 = 3 · = = / (4 · 3) = ) = = ) =
    = = = 88
    88
    = 1
  • R 3 = 1
  • R = 1 м

Важно!

Уважаемые родители!

При окончательном расчете радиуса не надо заставлять ребенка считать кубический корень. Учащиеся 6-го класса еще не проходили и не знают определение корней в математике.

В 6 классе при решении такой задачи используйте метод перебора.

Спросите ученика, какое число, если его умножить 3 раза на самого себя даст единицу.

Имея при себе всего одну формулу и зная изначально, чему равен диаметр или радиус, можно с лёгкостью вычислить площадь поверхности шара. Формула будет иметь вид S =4πR2 , где число «пи» умножается на 4, затем на радиус шара в квадратной степени. Но перед непосредственными вычислениями следует сразу разобраться в терминах.

Трактовка значений

Это следует знать:

  • Шар – геометрический объект, получившийся в результате вращательных полукруговых движений вокруг центра. Любая точка поверхности шара находится на одинаковом расстоянии от центра.
  • Сфера – не то же самое, что шар. Если тот является объёмным объектом и включает в себя внутреннее пространство, то сфера – это лишь поверхность данного объекта и имеет только свою площадь. Иными словами – нельзя сказать, что сфера имеет такой-то объём, в отличие от шара.
  • Число «пи» - это постоянное число, равное отношению длины окружности к её диаметру. В сокращённом виде его принято обозначать числом, равным 3,14. Но на самом деле, после тройки идёт больше тысячи цифр!
  • Радиус шара равен ½ его диаметру . Точный диаметр можно вычислить с использованием нескольких плоских и ровных предметов. Нужно лишь зажать шар между этими предметами, которые зажимают шар и расположены перпендикулярно друг к другу, а затем измерить получившийся диаметр.
  • Квадратная степень обозначается в виде двойки и означает то, что это число надо умножить на само себя один раз. Если бы степень числа была в виде тройки, то умножать на само себя нужно было бы два раза. Записав выражение на бумаге, можно понять, почему используются именно двойка и тройка, а не единица и двойка.
  • Объём – величина, обозначающая размер в пространстве, занимающее объектом. От диаметра зависит объём шара. Формула будет равна четырём трети, умноженным на число «пи» и вновь умноженным на его радиус в кубе.
  • Площадь – величина, обозначающая размер поверхности объекта, но не внутреннего пространства.

Занимательные факты

Это интересно:

  1. У числа «пи» есть собственные фан-клубы по всему миру. Члены общества пытаются запомнить как можно больше знаков из этого числа, а также пытаются разгадать вселенские тайны, сокрытые в числе.
  2. Площадь суши Земли составляет всего 29,2 % от её общей поверхности. Точное число площади сложно назвать из-за неравномерного рельефа Земли, такие как впадины и горы.
  3. Знания о формуле площади шара можно применять и в быту. Также этими знаниями можно подавлять соперника в споре.

Продемонстрировав объём своих знаний в области геометрии, можно изначально заставить вас уважать, а ремонтникам и продавцам можно дать понять, что вас просто так не обмануть.

Применение формулы

Рассмотрим на примере, как вычислить площадь круглого шара , диаметр которого равен 50 см. Следуя формуле, нужно 50 разделить на два (чтобы получить радиус), возвести полученное число в квадрат и умножить всё это дело сначала на 4, затем на 3,14. В итоге получим число в 7 850 квадратных сантиметров.

Формула вычисления площади применяется не только среди учителей в школе и научных сотрудников в лаборатории. Данная формула может пригодиться обычному маляру. Ведь если шар большой, а краски мало, то возникает вопрос – хватит ли ему этой смеси, чтобы покрасить весь объект. И это далеко не единственный бытовой случай, где может пригодиться формула.

Формула вычисления объёма может пригодиться и строительной бригаде, что делает ремонт. И неважно, какой это объект – промышленное здание, небольшой дом или обычная квартира. Этим и отличаются профессионалы – они умеют применять свои знания на практике.

Но как быть, если не представляется возможным измерить объект? Такой вопрос может возникнуть в случае огромных размеров объекта или его недосягаемости. В этом случае могут помочь электронные технологии, в основе работы которых лежит сканирование пространства определёнными частотами и лазерами. С современными технологиями необязательно знать все формулы наизусть. Достаточно иметь подключение к интернету и зайти на любой онлайн-калькулятор.

Принято считать, что первый, кто нашёл и вывел формулу объёма и площади шара, был Архимед . Это величайший древнегреческий учёный, живший за 300 лет до нашей эры. Он был не только математиком, но и физиком, и инженером. Он один из первых людей, кто попытался «оцифровать» окружающий нас мир. Его теоремы и труды используются по сей день.

Именно Архимед определил границы числа «пи» и обозначил их, не имея никаких современных гаджетов. Сам Архимед очень гордился найденной формулой, с помощью которой вычисляется объём шара. Его потомки в честь этого изобразили на его могильном камне цилиндр и шар.

Если бы каким-то чудом он переродился в наше время, то он сразу же смог бы преобразить этот мир и вывести его на новый уровень.

Видео

На примере этого видео вам будет легко понять, как найти площадь поверхности шара.

Определение шара

Шаром называют множество точек, удаленных от произвольно выбранной точки (центра шара) на расстояние не превышающее R R R - радиус этого шара.

Онлайн-калькулятор

У шара, как и у круга, есть диаметр D D D , который по длине в два раза превосходит радиус шара.

D = 2 ⋅ R D=2\cdot R D = 2 ⋅ R

Площадь поверхности шара можно найти используя как радиус, так и диаметр шара.

Формула площади поверхности шара по радиусу шара

S = 4 ⋅ π ⋅ R 2 S=4\cdot\pi\cdot R^2 S = 4 ⋅ π ⋅ R 2

R R R - радиус шара.

Пример

Шар вписан в куб, диагональ которого d d d равна 300 \sqrt{300} 3 0 0 (см.). Найти площадь поверхности шара.

Решение

D = 300 d= \sqrt{300} d = 3 0 0

Первым шагом в решении задачи будет нахождение длины стороны куба. Обозначим ее через a a a . Тогда, по теореме Пифагора:

D 2 = a 2 + a 2 + a 2 d^2=a^2+a^2+a^2 d 2 = a 2 + a 2 + a 2

D 2 = 3 ⋅ a 2 d^2=3\cdot a^2 d 2 = 3 ⋅ a 2

A = d 3 a=\frac{d}{\sqrt{3}} a = 3 d

A = 300 3 = 100 = 10 a=\frac{\sqrt{300}}{\sqrt{3}}=\sqrt{100}=10 a = 3 3 0 0 ​ ​ = 1 0 0 ​ = 1 0

Радиус шара, вписаного в куб равен половине стороны этого куба:

R = a 2 = 10 2 = 5 R=\frac{a}{2}=\frac{10}{2}=5 R = 2 a ​ = 2 1 0 ​ = 5

Тогда площадь поверхности шара:

S = 4 ⋅ π ⋅ R 2 = 4 ⋅ π ⋅ 5 2 ≈ 314 S=4\cdot\pi\cdot R^2=4\cdot\pi\cdot 5^2\approx314 S = 4 ⋅ π ⋅ R 2 = 4 ⋅ π ⋅ 5 2 3 1 4 (см. кв.)

Ответ: 314 см. кв.

Формула площади поверхности шара по диаметру шара

Формулу для площади поверхности шара легко получить через его диаметр, пользуясь соотношением между радиусом и диаметром шара:

S = 4 ⋅ π ⋅ R 2 = 4 ⋅ π ⋅ (D 2) 2 = π ⋅ D 2 S=4\cdot\pi\cdot R^2=4\cdot\pi\cdot\Big(\frac{D}{2}\Big)^2=\pi\cdot D^2 S = 4 ⋅ π ⋅ R 2 = 4 ⋅ π ⋅ ( 2 D ) 2 = π ⋅ D 2

S = π ⋅ D 2 S=\pi\cdot D^2 S = π ⋅ D 2

D D D - диаметр шара.

Пример

Диаметр шара равен 10 (см.). Найдите площадь его поверхности.

Решение

D = 10 D=10 D = 1 0

По формуле получаем:

S = π ⋅ D 2 = π ⋅ 1 0 2 ≈ 314 S=\pi\cdot D^2=\pi\cdot 10^2\approx314 S = π ⋅ D 2 = π ⋅ 1 0 2 3 1 4 (см. кв.)

Ответ: 314 см. кв.