Какие ионы необходимы для сокращения мышц. Физиология мышечного сокращения. В основе мышечного сокращения лежат два процесса

Длинные тонкие мышечные волокна, из которых построена скелетная мышца, – это гигантские клетки, образующиеся в ходе онтогенеза при слиянии множества отдельных клеток. У взрослого человека они могут достигать в длину 5 см! Многочисленные ядра в такой клетке располагаются прямо под цитоплазматической мембраной, а основная часть цитоплазмы состоит из вытянутых вдоль всей клетки миофибрилл (толщиной 1–2 мкм), с характерной поперечной исчерченностью (рис. 3). Такую «раскраску» миофибрилле придают саркомеры, в состав каждого из которых входит два набора параллельных, частично перекрывающихся филаментов: толстых миозиновых, которые образуют темную полосу и тянутся от одного края до другого, и тонких актиновых, лежащих в области светлой полосы и частично заходящих в область темных полос (рис. 4). Один саркомер от другого отделяется Z-диском.

Рис. 3. Схема небольшого отрезка клетки скелетной мышцы (мышечного волокна)

Рис. 4. А. Электронная микрофотография продольного среза через клетку скелетной мышцы кролика (при малом увеличении). Видна регулярная поперечная исчерченность. Клетка содержит множество параллельных миофибрилл (см. рис. 3). Б. Небольшой участок того же фото: показаны отрезки двух смежных миофибрилл и детали саркомера. В. Схема строения отдельного саркомера, объясняющая происхождение темных и светлых полос, которые видны на электронной микрофотографии

Цитоплазма обеспечивает миофибриллы энергией в виде АТФ – в активно функционирующей мышце обнаруживается много митохондрий. Кроме того, в цитоплазме содержатся гликоген, фосфокреатин, гликолитические ферменты.

Скелетная мышца превращает химическую энергию, накопленную в АТФ, в механическую с очень большой эффективностью – в виде тепла теряется всего 30–50%. (Для сравнения: автомобильный двигатель при сжигании бензина обычно теряет в виде тепла 80–90%.)

При мышечном сокращении за счет связывания миозином актина толстые и тонкие нити скользят относительно друг друга (рис. 5).

Рис. 5. Схема, иллюстрирующая процесс мышечного сокращения по принципу скользящих нитей: толстые и тонкие филаменты скользят друг по другу, не изменяя собственной длины

Физиологическим регулятором сокращения мышц служат ионы кальция. В состоянии покоя работает система активного транспорта ионов кальция, и они накапливаются в своеобразном хранилище, из которого высвобождаются под действием нервного импульса, обеспечивая мышечное сокращение.

Система транспорта ионов кальция работает за счет энергии АТФ. Того количества АТФ, которое имеется в мышце, хватает на поддержание работы сократительного аппарата всего в течение доли секунды. Как же работает мышца более продолжительное время? Оказывается, в мышце энергия запасается в форме фосфокреатина, или креатинфосфата, который может переносить больше высокоэнергетических фосфатных групп, чем универсальный АТФ. Фосфокреатин восстанавливает АТФ, обеспечивая тем самым приток энергии для мышечного сокращения. Однако в работающей мышце запасы фосфокреатина быстро истощаются, а это снижает и содержание АТФ.

При более продолжительной физической нагрузке мышцы обеспечиваются энергией за счет гликолиза – расщепления углеводов под действием ферментов с накоплением энергии в виде АТФ. Когда запасы креатина в мышце истощаются, понижается энергетический заряд мышечного сокращения, что приводит к стимуляции гликолиза, цикла трикарбоновых кислот и окислительного фосфорилирования в работающей мышце.

В отсутствие кислорода при расщеплении молекулы углеводов образуются две молекулы молочной кислоты (или лактата) и две молекулы АТФ. Однако, если для гликолиза используется гликоген мышц, то возникают две молекулы лактата и три молекулы АТФ.

Гликоген – это, как известно, главный резервный полисахарид, запасаемый в мышцах и печени. При пониженном уровне гликогена в мышцах и печени и наличии свободной глюкозы в крови она используется для синтеза гликогена. И, наоборот, при потребностях организма в энергетическом источнике для процессов гликолиза успешно используется гликоген.

Мышечная система наиболее развита по сравнению с другими системами организма. Для обеспечения работы мышц необходимо огромное количество энергии, которую человек может получать за счет креатинфосфата (фосфокреатина), углеводов в виде гликогена и глюкозы и жиров. Эти три вида энергоносителей различаются между собой по величине освобождаемой при их использовании энергии и по тому, как долго может каждый из них служить «топливным» источником. Так устроен механизм обеспечения мышц энергией (табл. 2, 3). Хорошо известно, что при продолжительной неинтенсивной работе при протекании окислительных процессов используются жиры или углеводы, а при работе несколько большей интенсивности используются механизмы анаэробного гликолиза. При очень интенсивной кратковременной нагрузке работа мышц обеспечивается за счет фосфагенов. Соответственно каждый из источников энергии имеет свою энергетическую стоимость и используется при определенных условиях (табл. 4).

Работающие мышцы для аэробного окисления углеводов по сравнению с другими органами потребляют очень большое количество кислорода (табл. 5).

Таблица 2. Запасы энергии в организме человека массой тела 70 кг
Таблица 3. Максимально возможная мощность скелетных мышц человека при использовании различных субстратов и путей катаболизма
Таблица 4. Максимальная скорость образования энергии из различных источников во время физических упражнений

Источник энергии

Максимальная скорость мышцы

Количество в мышце, ммоль/кг образования богатых энергией фосфатных связей, ммоль/ сек/кг

Максимальная скорость продукции, ккал/ч/кг

Время поддержания максимальной скорости

Креатинфосфат

Анаэробный гликолиз

Аэробное окисление глюкозы и гликогена

Аэробное окисление

Не лимитировано

Не лимитировано

Таблица 5. Относительное потребление кислорода различными органами человека в покое и при тяжелой работе*

Тонус скелетных мышц. В покое, вне работы, мышцы никогда полностью не расслабляются, а сохраняют некоторое напряжение, называемое тонусом. Внешне это выражается в упругости мышц. Тонус скелетных мышц связан с поступлением к мышце отдельных следующих друг за другом с большим интервалом нервных импульсов, возбуждающих попеременно различные мышечные волокна. Эти импульсы возникают в мотонейронах спинного мозга, активность которых в свою очередь поддерживается импульсами, исходящими как из вышележащих центров, так и с периферии от рецепторов растяжения («мышечных веретен»), находящихся в самих мышцах.

У человека тонус мышц в известных пределах может регулироваться произвольно: по желанию человек может почти полностью расслабить мышцы или же несколько напрячь их, не совершая, однако, при этом движения.

Работа и сила мышц. Величина сокращения (степень укорочения) мышцы при данной силе раздражения зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном же растяжении сокращение мышцы ослабляется. Если в результате длительной работы развивается утомление мышцы, то величина ее сокращения падает.

Для измерения силы мышцы определяют тот максимальный груз, который она в состоянии поднять. Эта сила может быть очень велика: собака, например, мышцами челюсти может поднять груз, превышающий вес ее тела в 8,3 раза. О силе икроножных мышц человека судят по величине груза, положенного ему на плечи, с которым он в состоянии приподняться на носки.

Рис. 6. Типы строения различных мышц (по А.А. Ухтомскому).
А – мышцы с параллельным ходом волокон; Б – веретенообразная мышца; В – перистая мышца

Сила мышцы при прочих равных условиях зависит не от ее длины, а от поперечного сечения: чем больше физиологическое поперечное сечение мышцы, т.е. сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. Физиологическое поперечное сечение совпадает с геометрическим только в мышцах с продольно расположенными волокнами; у мышц с косыми волокнами сумма поперечных сечений волокон может значительно превышать геометрическое поперечное сечение самой мышцы (рис. 6). По этой причине сила мышцы с косыми волокнами значительно больше, чем сила мышцы той же толщины, но с продольными волокнами. Чтобы сравнить силу разных мышц, максимальный груз, который мышца в состоянии поднять, делят на площадь ее поперечного сечения, вычисляя абсолютную мышечную силу. Например, абсолютная сила икроножной мышцы человека равна 5,9 кг/см 2 , сгибателя плеча – 8,1, жевательной мышцы – 10, двуглавой мышцы плеча – 11,4, трехглавой мышцы плеча – 16,8, гладких мышц – 1 кг/см 2 .

Большинство мышц млекопитающих и человека имеет перистое строение. Перистая мышца имеет большое физиологическое сечение, а поэтому обладает большой силой.

Работа мышцы измеряется произведением поднятого груза на величину укорочения мышцы, т.е. выражается в килограммометрах или граммсантиметрах.

По содержанию миоглобина мышечные волокна разделяют на красные, белые и промежуточные. Красные волокна принято считать «медленными», а белые – «быстрыми». Некоторые ученые считают, что при рождении мышцы человека состоят только из «медленных» волокон и часть из них в процессе развития превращается в «быстрые». Другие убеждены, что расположение мышц, особенности их строения и функций предопределены генетически.

Красные волокна работают в основном в аэробном режиме, а белые – в условиях недостатка кислорода, т.е. в них протекают разные метаболические процессы. Красные волокна, как правило, используются для выполнения легкой или умеренной работы, а белые начинают функционировать лишь после значительного возрастания притока возбуждающих импульсов во время очень интенсивной работы. Волокна промежуточного типа сохраняют свойства и красных, и белых волокон и называются еще «быстрыми красными».

Процентное содержание тех или иных волокон предопределяет специализацию атлета. Как правило, обладатели преимущественно красной мускулатуры достигают лучших результатов в видах спорта, требующих повышенной выносливости (плавание, велосипедный спорт, бег на средние и длинные дистанции и т.д.). Те, у кого больше белых мышечных волокон, лучше выполняют силовые упражнения. Последнее объясняется и тем, что белые волокна легче гипертрофируются (увеличиваются в объеме). Однако не все предопределяется только природой. Существуют еще и тренировочные факторы, которым некоторые специалисты отдают предпочтение в формировании структуры мышц.

Как мышцы «привыкают» к физическим нагрузкам. Во время тренировок в мышцах формируются механизмы запасания и использования энергетических субстратов: креатинфосфата, гликогена и жиров (в виде триацилглицеридов). Запасов АТФ и креатинфосфата, или фосфагена, в мышце очень мало. Фосфаты постоянно синтезируются (содержание креатинфосфата в белых мышечных волокнах составляет примерно 30 мкмоль на 1 г сырой массы мышцы), но быстро расходуются при нагрузке, продолжающейся более нескольких секунд. Энергоемкие гликоген и триацилглицериды составляют основную массу резервных источников «топлива» для мышц.

Под влиянием скоростной и силовой тренировки в белых мышечных волокнах повышается активность гликолитических ферментов и образуется большое количество гликогена, который запасается в мышцах в виде гранул, вокруг которых размещаются соответствующие ферменты. Происходят изменения и в буферных системах мышечных клеток: как только внутри клетки при интенсивной работе изменяется рН, это сразу же сказывается на работе ферментов, отвечающих за гликолиз.

Общее количество работы, которое анаэробный гликолиз может обеспечить при интенсивной нагрузке, зависит от резерва гликогена (при распаде каждой его молекулы образуется 6,2 моль АТФ). Само использование запасов гликогена в мышцах запускается гормональными и нервными стимулами. Один из таких гормонов – адреналин – способен значительно активизировать процессы использования гликогена для ресинтеза АТФ.

Под влиянием тренировки анаэробный гликолиз в мышцах можно многократно увеличить. Так, по некоторым данным, у тренированных спринтеров процессы гликолиза в мышцах ног усиливаются в две тысячи раз.

Однако за счет анаэробного гликолиза человек способен выполнять нагрузку только 2–3 минуты. После этого неизбежно запускаются процессы окислительного фосфорилирования.

При длительной работе главными действующими лицами становятся красные и промежуточные мышечные волокна. Энергия для деятельности этих мышц образуется в митохондриях (их в клетках красных мышечных волокон гораздо больше, чем в белых) с помощью окислительных ферментов в присутствии достаточного количества кислорода.

Гликоген, который активно используется при кратковременной работе, является (вместе с жирами) основным эндогенным субстратом и при продолжительной нагрузке. Оба эти вида «топлива», особенно жиры, содержатся в виде запасов в красных и промежуточных волокнах. Жиры несколько уступают гликогену в эффективности выхода энергии на единицу потребляемого кислорода: при их окислении образуется 5,6 моль АТФ.

При окислительном фосфорилировании мышца может получать энергетические субстраты и из центральных депо (гликоген из печени и жир из жировой ткани) и даже использовать энергетические источники, поступающие извне во время работы, например углеводные добавки при марафонском забеге, – природа предусмотрела для длительной работы дополнительные возможности.

Для представителей видов спорта, которые тренируются на выносливость, будет любопытен тот факт, что длительная и интенсивная работа мышц обеспечивается энергией лучше всего при одновременном использовании углеводов и жиров. Казалось бы, здесь некий парадокс. Ведь углеводов хватает только на 20–30 мин интенсивной работы, а жиры могут использоваться гораздо дольше. Однако дело все в том, что использование одних лишь жиров обеспечивает вдвое меньшую скорость выработки энергии, чем одновременное использование жиров и углеводов. А от этого зависит интенсивность выполняемой работы. Таким образом, как считают биохимики, гликоген является наилучшим «топливом» для обеспечения высокоинтенсивной продолжительной работы в аэробных условиях. Ученые нашли даже зависимость длительности работы до полного изнеможения от содержания гликогена в мышцах перед началом нагрузки. Однако, если нагрузка продолжается 2–3 ч, то организм начинает использовать для обеспечения мышечных сокращений и гликоген, и жиры. При переходе на расщепление жиров мощность работы снижается. Вначале используются триацилглицериды, а затем свободные жирные кислоты, которые поступают из крови.

Атлетов, специализирующихся в силовых видах спорта, и культуристов, конечно же, интересует вопрос рабочей гипертрофии мышц.

Систематическая интенсивная работа мышцы приводит к увеличению массы мышечной ткани. Это явление названо рабочей гипертрофией мышцы. В основе гипертрофии лежит увеличение массы протоплазмы мышечных волокон, приводящее к их утолщению. При этом повышается содержание белков и гликогена, а также веществ, доставляющих энергию, необходимую для мышечного сокращения – АТФ и креатинфосфата. Поэтому сила и скорость сокращения гипертрофированной мышцы выше, чем негипертрофированной.

Увеличение массы мышечной ткани у тренированных людей приводит к тому, что мускулатура тела может составлять 50% веса тела (вместо обычных 35–40%).

Гипертрофия развивается, если человек ежедневно на протяжении длительного времени производит мышечную работу, требующую большого напряжения (силовая нагрузка). Мышечная работа, производимая без особых усилий, даже если она продолжается очень долго, к гипертрофии мышцы не приводит.

Гипертрофия мышц очень важна для выполнения кратковременной «взрывной» работы. Возможно, это связано с тем, что запасы креатинфосфата в мышцах человека не увеличиваются больше определенного количества на единицу массы мышц. Таким образом, увеличение объема мышц способствует увеличению общего количества этого энергоемкого субстрата в мышцах и, соответственно, увеличению способности более эффективно выполнять работу максимальной мощности.

Противоположным рабочей гипертрофии явлением служит атрофия мышцы от бездеятельности. Она развивается во всех случаях, когда мышца почему-либо утрачивает способность совершать свою нормальную работу, например, при длительном обездвиживании конечности в гипсовой повязке, при долгом пребывании больного в постели, при перерезке сухожилия, вследствие чего мышца перестает совершать работу против нагрузки, и т.д.

При атрофии диаметр мышечных волокон и содержание в них сократительных белков, гликогена, АТФ и других важных для сократительной деятельности веществ резко падают. При возобновлении нормальной работы мышцы атрофия постепенно исчезает.

Утомление мышц. Временное понижение работоспособности мышц, наступающее в результате работы или тренировки и исчезающее после отдыха, определяется утомлением.

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает, пока не дойдет до нуля. Полученная таким образом кривая называется кривой утомления.

Наряду с изменением амплитуды сокращений при утомлении нарастает латентный период сокращения и понижается возбудимость. Но все эти изменения возникают не тотчас же после начала работы мыш-цы – существует некоторый период, в течение которого наблюдаются увеличение амплитуд сокращений и небольшое повышение возбудимости мышцы. При этом мышца становится легко растяжимой. В таких случаях говорят, что мышца «врабатывается», т.е. приспосабливается к работе при заданном ритме и силе раздражения. При дальнейшем длительном раздражении наступает утомление мышечных волокон.

Это может быть обусловлено накоплением в мышце продуктов обмена веществ (в частности, молочной кислоты, образующейся при расщеплении гликогена), оказывающих угнетающее влияние на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия.

Кроме того, на развитие утомления в мышце влияет постепенное истощение в ней энергетических запасов.

Все описанное выше относится к изолированной мышце. Ведь при работе в организме мышца непрерывно снабжается кровью и, следовательно, получает определенное количество питательных веществ (глюкозу, аминокислоты) и освобождается от продуктов обмена, нарушающих нормальную жизнедеятельность мышечных волокон. Главное отличие состоит в том, что в организме возбуждающие импульсы приходят к мышце с нерва. Нервно-мышечное соединение утомляется значительно раньше, чем мышечные волокна, в связи с чем блокирование передачи возбуждения с нерва на мышцу предохраняет последнюю от истощения, вызываемого длительной работой. В целостном организме еще раньше нервно-мышечных соединений утомляются при работе нервные центры.

Восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза можно ускорить, если во время отдыха производить работу другой рукой или нижними конечностями.

Продолжение следует

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Мышечное волокно и миофибрилла (рис. 1). Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл, которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности.

Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты .

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина . В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина , соединенные с нитевидными молекулами белка тропомиозина.

Миозиновые филламенты образованы повторяющимися молеку­лами белка миозина . Каждая молекула миозина имеет головку и хвост . Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик .

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки ), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ) . ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей , мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

• Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

• Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга (рис. 2, Б).

• Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

• Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается (рис. 2, Г).

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

• В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

• Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са++ -каналов, через которые в саркоплазму выходят ионы Са++ (рис. 3, В).

• Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

• К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения .

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

• латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

• фаза укорочения (около 50 мс);

• фаза расслабления (около 50 мс).

Рис. 4. Характеристика одиночного мышечного сокращения. Происхождение зубчатого и гладкого тетануса .

Б – фазы и периоды иышечного сокращения,
Б – режимы мышечного сокращения, возникающие при разной частоте стимуляции мышцы.

Изменение длины мышцы показано синим цветом, потенциал действия в мышце - красным, возбудиумость мышцы - фиолетовым.

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

• Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

• При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

• При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

• числом ДЕ, участвующих в сокращении;

• частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

• динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

• статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

• динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

• изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

• изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

• ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Структурная организация. Гладкая мышца состоит из одиночных клеток веретенообразной формы (миоцитов ), которые располагаются в мышце более или менее хаотично. Сократительные филламенты расположены нерегулярно, вследствие чего отсутствует поперечная исчерченность мышцы.

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Механизм сопряжения возбуждения и сокращения. При возбуждении клетки Cа++ поступает в цитоплазму миоцита не только из саркоплазматичекого ретикулума, но и из межклеточного пространства. Ионы Cа++ при участии белка кальмодулина активируют фермент (киназу миозина), который переносит фосфатную группу с АТФ на миозин. Головки фосфорилированного миозина приобретают способность присоединяться к актиновым филламентам.

Сокращение и расслабление гладких мышц. Скорость удаления ионов Са++ из саркоплазмы значительно меньше, чем в скелетной мышце, вследствие чего расслабление происходит очень медленно. Гладкие мышцы совершают длительные тонические сокращения и медленные ритмические движения. Вследствие невысокой интенсивности гидролиза АТФ гладкие мышцы оптимально приспособлены для длительного сокращения, не приводящего к утомлению и большим энергозатратам.

Физиологические свойства мышц

Общими физиологическими свойствами скелетных и гладких мышц являются возбудимость и сократимость . Сравнительная характеристика скелетных и гладких мышц приведена в табл. 6.1. Физиологические свойства и особенности сердечной мускулатуры рассматриваются в разделе «Физиологические механизмы гомеостаза».

Таблица 7.1. Сравнительная характеристика скелетных и гладких мышц

Свойство

Скелетные мышцы

Гладкие мышцы

Скорость деполяризации

медленная

Период рефрактерности

короткий

длительный

Характер сокращения

быстрые фазические

медленные тонические

Энергозатраты

Пластичность

Автоматия

Проводимость

Иннервация

мотонейронами соматической НС

постганглионарными нейронами вегетативной НС

Осуществляемые движения

произвольные

непроизвольные

Чувствительность к химическим веществам

Способность к делению и дифференцировке

Пластичность гладких мышц проявляется в том, что они могут сохранять постоянный тонус как в укороченном, так и в растянутом состоянии.

Проводимость гладкой мышечной ткани проявляется в том, что возбуждение распространяется от одного миоцита к другому через специализированные электропроводящие контакты (нексусы).

Свойство автоматии гладкой мускулатуры проявляется в том, что она может сокращаться без участия нервной системы, за счет того, что некоторые миоциты способны самопроизвольно генерировать ритмически повторяющиеся потенциалы действия.

Мы уже неоднократно имели возможность заметить, что один и тот же металл выполняет несколько биохимических обязанностей: железо переносит кислород и электроны, медь участвует в аналогичных процессах, цинк способствует гидролизу полипептидов и разложению бикарбонатов и т. д.

Но кальций побивает в этом отношении все рекорды. Ионы кальция образуют защитные оболочки у кораллов, скопления которых достигают громадных размеров; кальций необходим для работы ферментов, обеспечивающих мышечную деятельность; кальций регулирует систему свертывания крови, активирует некоторые ферменты; он же входит в состав костей и зубов у позвоночных и т. д.

Круговороту кальция способствует различная растворимость его углекислых солей: карбонат СаСО 3 мало растворим в воде, а гидрокарбонат Са(НСО 3) 2 растворим довольно хорошо, причем концентрация его в растворе зависит от концентрации диоксида углерода и, следовательно, от парциального давления этого газа над раствором; поэтому, когда углекислые воды горных источников вытекают на поверхность земли и теряют диоксид углерода (углекислый газ), карбонат кальция выделяется в виде осадка, образуя кристаллические сростки (сталактиты и сталагмиты в пещерах). Микроорганизмы осуществляют аналогичный процесс, извлекая из морской воды гидрокарбонат и используя карбонат для строительства защитных оболочек.

В организмах высших животных кальций также выполняет функции, связанные с созданием механически прочных структур. В костях кальций содержится в виде солей, близких по составу к минералу апатиту 3Са 3 (РO 4) 2 *CaF 2 (Cl). Символ хлора в скобках указывает на частичное замещение фтора на хлор в этом минерале.

Формирование костной ткани происходит под влиянием витаминов группы D; эти витамины, в свою очередь, синтезируются в организмах под влиянием ультрафиолетового излучения Солнца. Значительное количество витамина D имеется в рыбьем жире, поэтому при дефиците витамина в детском питании кальций не всасывается в кишечнике и развиваются симптомы рахита; врачи назначают в качестве лекарства рыбий жир или чистые препараты витамина D. Избыток этого витамина очень опасен: он может вызвать обратный процесс - растворение костной ткани!

Из пищевых продуктов кальций содержится в молоке, молочных продуктах (особенно много его в твороге, так как белок молока казеин связан с ионами кальция), а также в растениях.

Белки, имеющие небольшую молекулярную массу (около 11000) и содержащиеся в мышцах рыб, проявляют способность активно захватывать ионы кальция. Некоторые из них (например, альбумин карпа) были тщательно изучены; их состав оказался необычным: они содержат много аминокислоты аланина и фенилаланина и вовсе не содержат гистидина, цистеина и аргинина - почти неизменных составных частей других белков.

Для комплексных соединений иона кальция характерно образование мостиков - ион связывает преимущественно карбоксильные и карбонильные группы в образующемся комплексе.

Координационное число иона кальция велико и достигает восьми. Эта его особенность, по-видимому, лежит в основе действия фермента рибонуклеазы, который катализирует важный для организма процесс гидролиза нуклеиновых кислот (РНК), сопровождающийся освобождением энергии. Предполагают, что ион кальция образует жесткий комплекс, сближая друг с другом молекулу воды и фосфатную группу; находящиеся в окружении иона кальция остатки аргинина способствуют фиксации фосфатной группы. Она поляризуется кальцием и легче подвергается атаке со стороны молекулы воды. В результате фосфатная группа отщепляется от нуклеотида. Было доказано также, что ион кальция в этой ферментной реакции нельзя заменить на другие ионы с той же степенью окисления.

Ионы кальция активируют и другие ферменты, в частности α-амилазу (катализирует гидролиз крахмала), но в этом случае кальций все же можно заменить в искусственных условиях трехзарядным ионом металла неодима.

Кальций является и важнейшим компонентом той удивительной биологической системы, которая больше всего походит на машину, - системы мышц. Эта машина производит механическую работу за счет химической энергии, заключенной в веществах пищи; ее коэффициент полезного действия высок; она почти мгновенно может быть переведена из состояния покоя в состояние движения (причем в покое энергия не расходуется); ее удельная мощность около 1 кВт на 1 кг массы, скорость движений хорошо регулируется; машина вполне пригодна для длительной работы, требующей повторяющихся движений, срок службы около 2,6*10 6 операций. Примерно так описал мышцу проф. Уилки в популярной лекции, добавив еще, что машина ("линейный двигатель") может служить пищей.

Ученым очень трудно было выяснить, что же происходит внутри этого "линейного двигателя", каким образом химическая реакция порождает целенаправленное движение и какую роль играют во всем этом ионы кальция. В настоящее время установлено, что мышечная ткань состоит из волокон (вытянутых клеток), окруженных мембраной (сарколеммой). В мышечных клетках находятся миофибриллы - сократительные элементы мышцы, которые погружены в жидкость - саркоплазму. Миофибриллы состоят из сегментов - саркомеров. В саркомерах находится система из нитей двух типов - толстых и тонких.

Толстые нити состоят из белка миозина. Молекулы миозина представляют собой вытянутые частицы, имеющие на одном конце утолщение - головку. Головки выступают над поверхностью нитеобразной молекулы и способны располагаться под различными углами к оси молекулы. Молекулярная масса миозина равна 470000.

Тонкие нити образованы молекулами белка актина, имеющими сферическую форму. Молекулярная масса актина - 46000. Частицы актина расположены так, что получается длинная двойная спираль. Каждые семь молекул актина связаны нитеобразной молекулой белка тропомиозина, несущей на себе (ближе к одному из концов) шарообразную молекулу еще одного белка - тропонина (рис. 19). Тонкая нить скелетной мышцы содержит до 400 молекул актина и до 60 молекул тропомиозина. Таким образом, работа мышцы основывается на взаимодействии деталей, построенных из четырех белков.

Перпендикулярно осям нитей располагаются белковые образования - z-пластинки, к которым прикрепляются одним концом тонкие нити. Толстые нити размещены между тонкими. В расслабленной мышце расстояние между z-пластинками составляет приблизительно 2,2 мк. Сокращение мышцы начинается с того, что под влиянием нервного импульса выступы (головки) молекул миозина прикрепляются к тонким нитям и возникают так называемые сшивки, или мостики. Головки толстых нитей по обе стороны пластинки наклонены в противоположные стороны, поэтому, поворачиваясь, они втягивают тонкую нить между толстыми, что и приводит к сокращению всего мышечного волокна.

Источником энергии для работы мышцы является реакция гидролиза аденозинтрифосфорной кислоты (АТФ); присутствие этого вещества необходимо для работы мышечной системы.

В 1939 г. В. А. Энгельгардт и М. Н. Любимова доказали, что миозин и комплекс его с актином - актомиозин являются катализаторами, ускоряющими гидролиз АТФ в присутствии ионов кальция и калия, а также магния, который вообще часто облегчает гидролитические реакции. Особая роль кальция заключается в том, что он регулирует образование сшивок (мостиков) между актином и миозином. Молекула АТФ присоединяется к головке молекулы миозина в толстых нитях. Затем происходит какое-то химическое изменение, приводящее этот комплекс в активное, но неустойчивое состояние. Если такой комплекс вступит в соприкосновение с молекулой актина (на тонкой нити), то произойдет освобождение энергии вследствие реакции гидролиза АТФ. Эта энергия и заставляет мостик отклониться и подтянуть толстую нить ближе к белковой пластинке, т. е. вызвать сокращение мышечного волокна. Далее к актин-миозиновому комплексу присоединяется новая молекула АТФ, и комплекс немедленно распадается: актин отделяется от миозина, мостик более не связывает толстую нить с тонкой - мышца расслабляется, а миозин и АТФ остаются связанными в комплекс, находящийся в неактивном состоянии.

Ионы кальция содержатся в трубочках и пузырьках, окружающих одиночное мышечное волокно. Эта система трубочек и пузырьков, образованная тонкими мембранами, называется саркоплазматической сетью; она погружена в жидкую среду, в которой и находятся нити. Под влиянием нервного импульса изменяется проницаемость мембран, и ионы кальция, покидая саркоплазматическую сеть, выходят в окружающую жидкость. Предполагается, что ионы кальция, соединяясь с тропонином, влияют на положение нитевидной молекулы тропомиозина и переводят ее в такое положение, при котором активный комплекс АТФ - миозин может присоединиться к актину. По-видимому, регуляторное влияние ионов кальция распространяется с помощью нитей тропомиозина сразу на семь молекул актина.

После сокращения мышцы кальций очень быстро (доли секунды) удаляется из жидкости, вновь уходя в пузырьки саркоплазматической сети, и мышечные волокна расслабляются. Следовательно, механизм работы "линейного двигателя" заключается в попеременном вдвигании системы толстых миозиновых нитей в пространство между тонкими нитями актина, прикрепленными к белковым пластинкам, причем этот процесс регулируется ионами кальция, периодически появляющимися из саркоплазматической сети и снова уходящими в нее.

Ионы калия, содержание которого в мышце гораздо больше содержания кальция, способствуют превращению глобулярной формы актина в нитчатую - фибриллярную: в таком состоянии актин легче взаимодействует с миозином.

С этой точки зрения становится понятным, почему ионы калия усиливают сокращение мышцы сердца, почему они необходимы вообще для развития мышечной системы организма.

Ионы кальция - деятельные участники процесса свертывания крови. Нет надобности говорить, насколько важен этот процесс для сохранения жизни организма. Если бы кровь была лишена способности свертываться, ничтожная царапина представляла бы серьезную угрозу жизни. Но в нормальном организме кровотечение из небольших ран прекращается уже через 3-4 мин. На поврежденных тканях образуется плотный сгусток белка фибрина, закупоривающий рану. Исследование образования кровяного сгустка показало, что в его создании принимают участие сложные системы, включающие несколько белков и специальных ферментов. Не менее 13 факторов должны действовать согласованно для правильного хода всего процесса.

При повреждении сосуда кровеносной системы в кровь поступает белок тромбопластин. Ионы кальция принимают участие в действии этого белка на вещество, называемое протромбином (т. е. "источником тромбина"). Еще один белок (из класса глобулинов) ускоряет превращение протромбина в тромбин. Тромбин действует на фибриноген - высокомолекулярный белок (его молекулярная масса около 400000), молекулы которого имеют нитевидное строение. Фибриноген образуется в печени и является растворимым белком. Однако под влиянием тромбина он превращается сначала в мономерную форму, а затем полимеризуется, и получается нерастворимая форма фибрина - тот самый сгусток, который и прекращает кровотечение. В процессе образования нерастворимого фибрина опять участвуют ионы кальция.

Минеральные вещества входят в состав всех живых тканей. Однако нормальное функционирование тканей обеспечивается не только наличием в них тех или иных минеральных солей, но и строго определенным их соотношением. Минеральные вещества поддерживают необходимое осмотическое давление в биологических жидкостях и обеспечивают постоянство кислотно-щелочного равновесия в организме.Рассмотрим основные минеральные вещества.

Калий содержится главным образом в клетках, натрий - в межклеточной жидкости. Для нормальной жизнедеятельности организма требуется строго определенное соотношение частиц натрия и калия. Должное соотношение этих ионов обеспечивает нормальную возбудимость нервной и мышечной тканей. Натрий играет большую роль в поддержании постоянства осмотического давления. При пониженном содержании калия в миокарде (мышечной ткани сердца) нарушается сократительная функция сердца. Но при избытке калия деятельность сердца также нарушается. Суточная потребность взрослого человека: натрий - 4-6 г, калий - 2-3 г.

Кальций входит в состав костей в виде фосфорных солей. Его ионы обеспечивают нормальную деятельность мозга и скелетных мышц. Наличие кальция необходимо для свертывания крови. Избыток кальция повышает частоту и силу сердечных сокращений, а при сверхбольших концентрациях в организме может вызвать остановку сердца. Суточная потребность взрослого человека в кальции - 0,7-0,8 г.

Фосфор входит в состав всех клеток и межтканевых жидкостей. Он играет большую роль в обмене белков, жиров, углеводов и витаминов. Это вещество - непременная составляющая богатых энергией веществ. Соли фосфорных кислот поддерживают постоянство кислотно-щелочного равновесия крови и других тканей. Суточная потребность взрослого человека в фосфоре - 1,5-2 г.

Хлор содержится в организме главным образом в соединении с натрием и входит в состав соляной кислоты желудочного сока. Хлор необходим для нормальной жизнедеятельности клеток. Суточная потребность взрослого человека в хлоре - 2-4 г.

Железо является составной частью гемоглобина и некоторых ферментов. Обеспечивая транспорт кислорода, оно принимает участие в окислительных процессах. Суточная потребность в железе для мужчин составляет 10 мг, для женщин - 18 мг.

Бром в небольших количествах содержится в крови и в других тканях. Усиливая торможение в коре больших полушарий, он способствует нормальному соотношению между процессами возбуждения и торможения.

Йод - обязательный компонент гормона щитовидной железы. Недостаток этого вещества в организме вызывает нарушение многих функций. Суточная потребность в йоде для взрослых здоровых людей составляет 0,15 мг (150 мкг).

Сера входит в состав многих белков. Она содержится в некоторых ферментах, гормонах, витаминах и других соединениях, играющих важную роль в обмене веществ. Кроме того, серная кислота используется печенью для нейтрализации некоторых веществ.

Для нормальной жизнедеятельности организма, кроме перечисленных веществ, имеют значение магний, цинк и т. д. Некоторые из них (алюминий, кобальт, марганец и др.) входят в состав организма в столь незначительных количествах, что их называют микроэлементами. Разнообразное питание обычно полностью обеспечивает организм всеми минералами.

На вопрос Чем обусловлено появление кальция в цитоплазме клеток скелетных мышц? заданный автором роскошествовать лучший ответ это кальций является фактором, разрешающим сокращение мышц: при повышении концентрации ионов кальция. в миоплазме происходит присоединение Сa к регуляторному белку, в результате чего актин становится способным взаимодействовать с миозином; соединяясь, эти два белка образуют актомиозин, и мышца сокращается. В процессе образования актомиозина происходит расщепление АТФ, химическая энергия которого обеспечивает выполнение механической работы и частично рассеивается в виде тепла. Наибольшая сократительная активность скелетной мышцы наблюдается при концентрации кальция 10-6-10(минус в) -7 моль; при понижении концентрации ионов Ca (менее 10-7 моль) мышечное волокно теряет способность к укорочению и напряжению. Действие Ca на ткани проявляется в изменении их трофики, интенсивности окислительно-восстановительных процессов и в других реакциях, связанных с образованием энергии. Изменение концентрации Ca в омывающей нервную клетку жидкости существенно влияет на проницаемость ее мембраны для ионов калия и особенно для ионов натрия, причем понижение уровня Ca вызывает повышение проницаемости мембраны для ионов натрия и повышение возбудимости нейрона. Повышение концентрации Ca оказывает стабилизирующее влияние на мембрану нервной клетки. Установлена роль Ca в процессах, связанных с синтезом и выделением нервными окончаниями медиаторов, обеспечивающих синаптическую передачу нервного импульса.
Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин. например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 10в6степени, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума - 10в4 степени, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма. В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов натрия и калия - натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса - Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия. Существуют два типа Са2+-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая - аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция. К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ. В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.